Efficacy and safety of direct-acting antivirals for treatment of hepatitis C infected kidney transplant recipients; a meta-analysis

Wisit Cheungpasitporn*, Charat Thongprayoon, Karn Wijarnpreecha, Ankit Sakhuja, Wonngarm Kittanamongkolchai, Jackrapong Bruminhent

*Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
1Department of Internal Medicine, Bassett Medical Center, Cooperstown, NY, USA
2Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota, USA
3Division of Infectious Diseases, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand

ARTICLE INFO

Article Type: Mini-Review

Article History:
Received: 29 December 2016
Accepted: 20 February 2017
ePublished: 6 March 2017

Keywords:
Direct-acting antivirals
Hepatitis C
Kidney transplantation
Renal transplantation
Transplantation

ABSTRACT

The use of direct-acting antivirals (DAAs) for treatment of hepatitis C virus (HCV) infection has been shown to very effective. However, its efficacy and tolerability in kidney transplant recipients are unclear. A literature search was performed using MEDLINE, EMBASE, and Cochrane Databases from inception through January 2017. We included studies that reported crude numbers of kidney transplant patients who achieved sustained virological response (SVR) or developed adverse effects with DAAs therapy. Pooled estimated rates of SVR at 12 weeks (SVR12) after DAAs therapy and discontinuation rate of DAAs treatment with 95% confidence interval (CI) were assessed using a random-effect, generic inverse variance method. The study protocol is registered with PROSPERO (International Prospective Register of Systematic Reviews; no. CRD42017054575). Around, 24 studies with 892 kidney transplant recipients were included in the meta-analysis. The pooled estimated SVR12 rate with DAAs treatment for HCV among kidney transplant patients was 97% (95% CI: 95%-99%; I² = 22%). The pooled estimated rate of discontinuation of DAAs treatment for HCV among kidney transplant patients was 2% (95% CI: 1%-3%; 12 = 0%). Reported treatment-related serious adverse events included bradycardia with syncope in the co-administration of sofosbuvir with amiodarone, pulmonary embolism, gastrointestinal bleeding, portal vein thrombosis, bacteremia, anemia particularly with regimens including ribavirin, and uncommonly increased serum creatinine. The findings of our study suggest excellent efficacy and tolerability profiles of DAAs therapy for HCV infection in kidney transplant patient populations.

A R T I C L E I N F O

A B S T R A C T

Keywords:
Direct-acting antivirals
Hepatitis C
Kidney transplantation
Renal transplantation
Transplantation

Introduction
Hepatitis C virus (HCV) infection universally affects greater than 200 million people worldwide (1). Transmission of HCV occurs essentially via blood transfusion. Consequently, the prevalences of HCV infection in end-state kidney disease on hemodialysis (2.6%-22.9% in Western countries) and in kidney transplant recipients (1.8%-8% in developed countries) are higher than in the general population (~1% in the United States) (2-5). Most kidney transplant patients have received HCV infection while on dialysis. Transmission from organ transplantation is a scarcity in this current era due to decent donor screening (6). In the current years, remarkable advancement has been made in the development of oral anti-HCV agents that undeviatingly inhibit and target multiple HCV viral proteins with interferon (IFN) free direct-acting antiviral (DAA) therapies with excellent reported sustained

*Corresponding author: Wisit Cheungpasitporn MD, Email: wcheungpasitporn@gmail.com

Implication for health policy/practice/research/medical education:
The efficacy and tolerability of direct-acting antivirals (DAAs) therapy for HCV infection in kidney transplant recipients are unclear. In this meta-analysis including 24 studies with 892 kidney transplant recipients, we demonstrate excellent efficacy and tolerability profiles with estimated SVR12 rate of 97% and estimated rate of discontinuation of DAAs of 2%.

Cheungpasitporn W et al

virologic response (SVR) at 12 weeks with smaller side effects (1,7,8).

Since DAAIs do not stimulate the host immune system, which is a main concern of IFN therapy, studies have implied that DAAs can be utilized for the eradication of HCV infection following renal transplantation (1,9-11). However, its efficacy and tolerability in kidney transplant recipients are unclear. Thus, we conducted a meta-analysis to assess the efficacy (SVR 12) and safety of DAA therapy for HCV infection in kidney transplant recipients.

Materials and Methods

Search strategy

This systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines (12). The study protocol is registered with PROSPERO (International Prospective Register of Systematic Reviews; no. CRD42017054575). W.C. and C.T. (two investigators) independently searched published articles and conference abstracts listed in MEDLINE, EMBASE and the Cochrane databases from inception through January 2017 using the following words: “direct-acting antiviral” AND “transplantation” AND “kidney” or “renal” (Item S1 in online supplementary data). A manual search for additional relevant studies using references from retrieved articles was also performed. Differing decisions were resolved by mutual consensus.

Inclusion criteria and outcomes

The inclusion criteria were 1) observational studies or randomized controlled trials (RCTs) published as original studies or conference abstracts that evaluated the efficacy and safety of DAAs for treatment of HCV infection in kidney transplant populations and 2) crude number of kidney transplant patients who achieved SVR or developed adverse effects with DAA therapy were provided. Our outcomes of interest in this study included the efficacy of DAA treatment representing by pooled rate of SVR and serious adverse side effects requiring DAA discontinuation representing by pooled rate of DAA discontinuation.

Data extraction

A structured data collection report utilized to derive the data from included studies consisted of the first author, country where studies were conducted, type of study, year of publication, total number of kidney transplant patients, HCV genotype, baseline estimated glomerular filtration rate (eGFR) (mL/min/BSA), DAA regimens, time between transplant to DAA treatment, duration of DAA treatment, SVR12, reported adverse events and drug-related serious adverse events, adverse event details, change in renal function with DAA treatment, changes in immunosuppression (dose changes during DAA treatment), rate of treatment discontinuation due to serious adverse events.

Statistical analysis

MetaXL software (EpiGear International Pty Ltd) (13) was used for meta-analysis of efficacy and safety of DAA treatment. A random-effect model was employed rather than a fixed-effect model, given the high likelihood of between-study variances. Statistical heterogeneity was appraised using Cochran’s Q test. This statistic was complemented with the I² statistic, which quantifies the proportion of the total variation crossed studies that is due to heterogeneity rather than chance. An I² of 0%-25% renders insignificant heterogeneity, 26%-50% low heterogeneity, 51%-75% moderate heterogeneity and >75% high heterogeneity (14). The likelihood of publication bias was evaluated by funnel plots of the logarithm of odds ratios vs. their standard errors (15).

Results

The search strategy yielded 643 potentially relevant articles: 540 were excluded based on the title and abstract which apparently showed that they did not fulfill inclusion criteria regarding study design, article type, population, or outcome of interest (Figure 1). The remaining 103 articles underwent full-length review, with 79 excluded because they were not observational studies or RCTs (n = 10) or did not report outcomes of interest (n = 69). Twenty-four studies (1,10,11,16-41) with 892 kidney transplant recipients were included in the meta-analysis. Table 1 and Table 2 contain individual characteristics of all included studies.

Potentialy relevant articles identified from search of MEDLINE, EMBASE, Cochrane Database of Systematic Reviews and Cochrane Central Register of Controlled Trials

(n=643)

Title and abstract reviewed for screening.

640 articles were excluded based on title and abstract for not clearly meeting inclusion criteria.

103 potentially relevant articles included for full-length article review.

69 articles were excluded because they did not report the outcomes of interest.

22 studies were included for the meta-analysis of the SVR12 rate

23 studies were included for the meta-analysis of the discontinuation rate.

Figure 1. Search Strategy.
Table 1. Main characteristics of studies of HCV treatment with DAAs in kidney transplant recipients

<table>
<thead>
<tr>
<th>Authors</th>
<th>Country</th>
<th>Type of study</th>
<th>Year</th>
<th>Total (N)</th>
<th>Genotype</th>
<th>Baseline eGFR (mL/min/BSA)</th>
<th>Treatment</th>
<th>Time between transplant to HCV treatment</th>
<th>Duration of treatment (weeks)</th>
<th>SVR12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kamar et al (16)</td>
<td>France</td>
<td>Cohort</td>
<td>2016</td>
<td>25</td>
<td>76% (I)</td>
<td>1.3±0.6; eGFR 64±21</td>
<td>SOF+Sim (n=6), SOF+LDV (n=9), SOF+DCV (n=4), SOF+RBV (n=3), SOF+LDV+RBV (n=1), SOF+Sim+RBV (n=1), PegIFN+SOF+RBV (n=1)</td>
<td>146 months (range 1–329)</td>
<td>12 weeks (76%) or 24 weeks (24%)</td>
<td>100%</td>
</tr>
<tr>
<td>Sawinski et al (11)</td>
<td>USA</td>
<td>Cohort</td>
<td>2016</td>
<td>20</td>
<td>88% (I)</td>
<td>1.39±0.43; eGFR 63.44±20.81</td>
<td>SOF + Sim (n=9), OF + LDV (n=7), OF + RBV (n=3), OF + DCV (n=1)</td>
<td>888 days (IQR 341–1621 days)</td>
<td>12 weeks</td>
<td>100%</td>
</tr>
<tr>
<td>Lin et al (6)</td>
<td>USA</td>
<td>Multicenter-cohort</td>
<td>2016</td>
<td>24</td>
<td>58% (la), 17% (lb), 12.5% (non-subtypeable), 12.53% (lii)</td>
<td>1.21 (0.66–1.76); eGFR 71.9 (47–96)</td>
<td>37% SOF + Sim (n=9), 2.5% SOF + Sim + RBV (n=3), 29% SOF + LDV + RBV (n=1), 17% SOF + RBV (n=4)</td>
<td>96 months (range 2 to 492)</td>
<td>12 to 24 weeks (20%)</td>
<td>91%</td>
</tr>
<tr>
<td>Beinhardt et al (17)</td>
<td>Austria</td>
<td>Cohort</td>
<td>2016</td>
<td>8 Ktx alone, 7 Ktx/Ltx</td>
<td>13.3% (la), 53.3% (lb), 13.3% (lii), 6.7% (Iva/c/d), 6.7% (IVh), 6.7% (lb/lii)</td>
<td>Ktx alone; 1.8±1.0/eGFR 62.7±38.3</td>
<td>Ktx/Ltx; 1.3±0.3/eGFR 81.2±24.6</td>
<td>12 weeks (80%) or 24 weeks (20%)</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Colombo et al (10)</td>
<td>Italy, France, Austria, and Germany</td>
<td>RCT</td>
<td>2016</td>
<td>114</td>
<td>15% (la), 75% (lb), 2% (no confirmed subtype), 9% (IV)</td>
<td>Median creatinine clearance 56 (35–135)</td>
<td>SOF + LDV</td>
<td>12.0 (0.5–42.0) years</td>
<td>12 weeks (50%) or 24 weeks (50%)</td>
<td>100%</td>
</tr>
<tr>
<td>Goyal et al (18)</td>
<td>USA</td>
<td>Cohort</td>
<td>2016</td>
<td>8 KT alone, 10 pts Ktx/Ltx</td>
<td>89% (I)</td>
<td>All; 1.23±0.38 Ktx alone; 1.28±0.5 Ktx/Ltx; 1.18±0.27</td>
<td>SOF+LDV (n=6), SOF+Sim (n=7), SOF + RBV (n=4), BV + PTV-r (n=1)</td>
<td>84 months (7 to 456)</td>
<td>N/A</td>
<td>89%, Ktx alone 87.5%, Ktx/Ltx 90%</td>
</tr>
<tr>
<td>Gentil et al (19, 20)</td>
<td>Spain</td>
<td>Multicenter-cohort</td>
<td>2016</td>
<td>119 KTRs, 110 KT alone, 9 Ktx/Ltx</td>
<td>66.5% (lb), 3.4% (la), 5.3% (III), 5.9% (IV), 4.2% (IIi), 2.5% (not notified)</td>
<td>1.41</td>
<td>91% SOF based regimen, 65/119 SOF + LDV, 17/119 SOF + Sim, 16/119 SOF + DCV, 10/119 SOF + RBV, 9/119 with 3D, 11/19 Sim + DCV + RBV</td>
<td>11.4 ± 10 years</td>
<td>14.1 ± 5 weeks</td>
<td>97.8%</td>
</tr>
<tr>
<td>Gallegos-Orozco et al (21)</td>
<td>USA</td>
<td>Cohort</td>
<td>2016</td>
<td>7</td>
<td>85.7% (I), 14.3% (II)</td>
<td>All had eGFR>30</td>
<td>5 with genotype I with SOF + LDV +/- RBV, One with genotype II with SOF + DCV</td>
<td>165 days (range: 109 - 209 days)</td>
<td>12-24 weeks (100%)</td>
<td></td>
</tr>
<tr>
<td>Hussein et al (22)</td>
<td>Iraq</td>
<td>Cohort</td>
<td>2016</td>
<td>3</td>
<td>100% (IV)</td>
<td>N/A</td>
<td>SOF + RBV</td>
<td>N/A</td>
<td>24 weeks (100%)</td>
<td></td>
</tr>
<tr>
<td>El-Halawany et al (23)</td>
<td>USA</td>
<td>Cohort</td>
<td>2016</td>
<td>15</td>
<td>93.3% (I), 6.7% (Iia)</td>
<td>N/A</td>
<td>SOF + RBV</td>
<td>N/A</td>
<td>24 weeks (N/A)</td>
<td></td>
</tr>
<tr>
<td>Fernández et al (24)</td>
<td>Spain</td>
<td>Cohort (Spanish registry)</td>
<td>2016</td>
<td>103</td>
<td>83% (I), 6% (III), 8% (IV), 2% (V)</td>
<td>1.7 (0.58 - 8.84)</td>
<td>57% SOF + LDV, 17% SOF + DCV, 41% used RBV</td>
<td>147 (1-561) months</td>
<td>12-24 weeks (98%)</td>
<td></td>
</tr>
<tr>
<td>Kirushnan et al (25)</td>
<td>India</td>
<td>Cohort</td>
<td>2016</td>
<td>20</td>
<td>60% (I), 30% (III), 5% (IV), 5% (mixed)</td>
<td>1.41±0.54</td>
<td>SOF + RBV</td>
<td>12.5 years</td>
<td>12 weeks (76.9%)</td>
<td></td>
</tr>
<tr>
<td>Study (Ref.)</td>
<td>Country</td>
<td>Cohort</td>
<td>Year</td>
<td>Genotype</td>
<td>Treatment</td>
<td>Duration</td>
<td>12 weeks</td>
<td>24 weeks</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>--------</td>
<td>------</td>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>Prasad et al (26,27)</td>
<td>India</td>
<td>Cohort</td>
<td>2016</td>
<td>22</td>
<td>63.6% (III), 27.3% (I), 4.5% (II), 4.5% (IV)</td>
<td>N/A</td>
<td>SOF + RBV (n=14), SOF + RBV+DCV (n=5), SOF + RBV+ LDV (n=3)</td>
<td>N/A</td>
<td>24 weeks for SOF + RBV; At least 12 weeks for SOF + RBV+DCV or SOF + RBV+ LDV</td>
<td>100%</td>
</tr>
<tr>
<td>Kusnir et al (28,29)</td>
<td>USA</td>
<td>Cohort</td>
<td>2016</td>
<td>21</td>
<td>Almost all (I)</td>
<td>N/A</td>
<td>SOF+LDV+RBV (n=13), SOF+ LDV (n=5), SOF+DCV (n=1), SOF+SIM (n=1), SOF + RBV (n=1)</td>
<td>N/A</td>
<td>60-90 days after transplant</td>
<td>12 weeks</td>
</tr>
<tr>
<td>Lubetzky et al (30,31)</td>
<td>USA</td>
<td>Cohort</td>
<td>2016</td>
<td>31</td>
<td>90.3% (I), 6.5% (II), 3.2% (III)</td>
<td>1.3 ± 0.4; eGFR 64.2±16.5</td>
<td>Genotype I, SOF + LDV (n=21, 75%), SOF + LDV + RBV (n=3,11%), SOF + RBV (n=2, 7%), SOF+ DCV (n=2, 7%); Genotype II, SOF + RBV (n=2); Genotype III, SOF+DCV (n=1)</td>
<td>N/A</td>
<td>Median of 1,168 (range 101, 10404) days</td>
<td>93.5% 12 weeks 6.5% 24 weeks for 2 patients with SOF + LDV</td>
</tr>
<tr>
<td>Martin et al (32)</td>
<td>USA</td>
<td>Cohort</td>
<td>2016</td>
<td>21</td>
<td>57% (Ia), 38% (Ib), 5% (Ia/fg)</td>
<td>1.41 ± 0.5</td>
<td>SOF + RBV, SOF SIM, LDV /SOF + RBV</td>
<td>N/A</td>
<td>N/A</td>
<td>95%</td>
</tr>
<tr>
<td>Aull et al (33)</td>
<td>USA</td>
<td>Cohort</td>
<td>2016</td>
<td>29</td>
<td>85% (I)</td>
<td></td>
<td>37% >60 mL/min, 15% 50-59, 19% 40-49, 11% 30-39, 11% 20-29, 7% Unknown</td>
<td></td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Polanco Fernandez et al (34)</td>
<td>Spain</td>
<td>Cohort</td>
<td>2016</td>
<td>33</td>
<td>N/A</td>
<td>N/A</td>
<td>SOF + LDV (90.9% [n= 30]) or DCV (9.1% [n= 3])</td>
<td>N/A</td>
<td>N/A</td>
<td>100% at the time of analysis (11/11)</td>
</tr>
<tr>
<td>Fernandez Ruiz et al (35)</td>
<td>Spain</td>
<td>Cohort</td>
<td>2016</td>
<td>48</td>
<td>N/A</td>
<td>N/A</td>
<td>SOF+LDV (87.5% [n = 42]) or SOF+DCV (6.3% [n = 3]), and DSV +OBV +PTV-r +DV+RBV, 4% SOF+RBV, 4% SOF+DCV+RBV, 3%SOF+DCV</td>
<td>N/A</td>
<td>9.3 years (IQR 6.4-14.0)</td>
<td>N/A</td>
</tr>
<tr>
<td>Sawinski et al (36,37)</td>
<td>USA</td>
<td>Cohort</td>
<td>2016</td>
<td>43, 19 HCV+ donor, 24 HCV- donor</td>
<td>90.7% (I), 9.3% (II)</td>
<td>1.39 (IQR 1.07-1.73)</td>
<td>23/43 SOF+ LDV, 4/43 SOF +LDV +RBV, 4/43 SOF+ DCV + RBV, 12/43 (12%) SOF+SIM</td>
<td>N/A</td>
<td>1123 (428-1738) days in HCV+ donor, 1064 (340-2840) days in HCV- donor</td>
<td>1/43 16 weeks 3/43 24 weeks 39/43 12 weeks</td>
</tr>
<tr>
<td>Hatahet et al (38)</td>
<td>USA</td>
<td>Cohort</td>
<td>2016</td>
<td>11</td>
<td>90.9% (IA) 9.1% (II)</td>
<td>1.4</td>
<td>73% LDV +SOF, 18% SOF+SIM, 9% SOF+RBV</td>
<td>N/A</td>
<td>13 months (range 6-124 months)</td>
<td>N/A</td>
</tr>
<tr>
<td>Snyder et al (39)</td>
<td>USA</td>
<td>Cohort</td>
<td>2016</td>
<td>16</td>
<td>100% (I)</td>
<td>N/A</td>
<td>SIM/SOF/RIBA, SOF/LED/RIBA and SOF/LED and SIM/, SOF</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Trakroo et al (40)</td>
<td>USA</td>
<td>Cohort</td>
<td>2015</td>
<td>8</td>
<td>100% (I)</td>
<td>All >30 mL/min</td>
<td>SOF+SIM (n=2), SOF+ LDV (n=6)</td>
<td>N/A</td>
<td>12 weeks</td>
<td>N/A</td>
</tr>
<tr>
<td>Kogiso et al (41)</td>
<td>Japan</td>
<td>Cohort</td>
<td>2016</td>
<td>7</td>
<td>100% (I)</td>
<td></td>
<td>DCV+ asunaprevir</td>
<td>5 (0.5-35) years after transplant</td>
<td>24 weeks</td>
<td>100% (5/5)</td>
</tr>
</tbody>
</table>

Abbreviations: AEs; Adverse events (AEs); Estimated glomerular filtration rate (eGFR); Hepatitis C virus (HCV); Ledipasvir (LDV); Paritaprevir-ritonavir (PTV-r); Simeprevir (SIM); Sofosbuvir (SOF); Ombitasvir (OBV); Dasabuvir (DBV); Daclatasvir (DCV); Grazoprevir-Elbasvir (GZR-EBR); Velpatasvir (VEL); Ribavirin (RBV); Serious adverse events (SAEs); Not available (N/A); Kidney transplant (Ktx); Liver transplant (LTx); Calcineurin inhibitor (CNI).
Table 2. Reported adverse effects, renal safety and discontinuation rate of HCV treatment with DAAs in kidney transplant recipients

<table>
<thead>
<tr>
<th>Authors</th>
<th>Reported AE and Drug related SAE</th>
<th>AE details</th>
<th>Change in renal function</th>
<th>Change in IS (dose change during DAA treatment)</th>
<th>Treatment discontinuation due to SAEs</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kamar et al (16)</td>
<td>0%</td>
<td>No adverse event was observed.</td>
<td>No significant change in kidney function was observed.</td>
<td>Doses of tacrolimus remained unchanged during and after therapy.</td>
<td>0%</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hemoglobin level remained unchanged during therapy</td>
<td>At the end of therapy, GFR had decreased by 10 mL/min or greater in 3 patients: One having at baseline eGFR of 30 mL/min and two others having initially a GFR of 87 and 93 mL/min, respectively.</td>
<td>Tacrolimus trough levels significantly decreased during therapy and did not increase after therapy cessation. No modification to cyclosporine or everolimus dose or level occurred</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sawinski et al (11)</td>
<td>6/20 (30%)</td>
<td>2/20 anemia; 1/20 anemia requiring blood transfusion; 4/20 increased Serum Cr (>0.25 mg/dL) due to supratherapeutic tacrolimus levels, diuretics, and losartan. No rejection was observed.</td>
<td>No statistically significant differences in serum Cr before and after treatment.</td>
<td>9/20 (45%) IS dose change; 3/9 (33.3%) increased IS dose; 6/9 (66.7%) decreased IS dose; CNI levels decreased after completion of DAA therapy, regardless of CNI dose alteration during the course of antiviral therapy.</td>
<td>0%</td>
<td>N/A</td>
</tr>
<tr>
<td>Lin et al (1)</td>
<td>11 patients (46%) AE; 3 SAE; 1- GI bleeding; 1- portal vein thrombosis and streptococcus bacteremia; 1- sinus bradycardia with syncope (co-administration of SOF and amiodarone); 1- Shortness of Breath; 1- Gout flair; 1- Fatigue; 1- Headache; 1- Dizziness; 1- Diarrhea; 1- Pain in the lower extremity; 1- Photosensitivity; 1- Rash; 1- Insomnia</td>
<td>No rejection related to the treatment.</td>
<td>No significant change in kidney function was observed.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beinhardt et al (17)</td>
<td>KTx alone; AE- 4; SAE- 1 (refractory ascites received OLT); Ktx/Ltx; AE- 3; SAE- 0</td>
<td>Most common AEs fatigue, nausea, cephalgea, and myalgia/arthalgia</td>
<td>1 KTx alone {refractory ascites received OLT}; 2 Ktx/Ltx had unstable BP at week 2 (SOF/SMV) and week 20 (SOF/DCV), without need for modification of antihypertensive medication</td>
<td>Not significant after treatment (12 weeks) in both KTx alone and Ktx/Ltx</td>
<td>0%</td>
<td>N/A</td>
</tr>
</tbody>
</table>

AEs: Adverse Events; SAEs: Severe Adverse Events; IS: Immunosuppression; DAA: Direct-acting antiviral agent; Ktx: Kidney transplantation; Ltx: Liver transplantation; CyA: Cyclosporine; DAA: Direct-acting antiviral agent; OLT: Orthotopic liver transplantation; SOF: Sofosbuvir; SMV: Simeprevir; DCV: Daclatasvir; DAC: Daclatasvir; CyA: Cyclosporine; OLT: Orthotopic liver transplantation.
No episodes of rejection occurred. The most frequent adverse events overall were headache (n = 22 [19%]), asthenia (n = 16 [14%]), and fatigue (n = 11 [10%]). Grade 3 or 4 laboratory abnormalities; Hemoglobin deficiency 2/114; Lymphocytopenia 2/114; Neutropenia 1/114; Thrombocytopenia 1/114; Leukopenia 1/114; International normalized ratio 1/114; Creatinine level 2/114; Lipase level 3/114; Hyperglycemia 1/114; Hypokalemia 1/114; Hyperuricemia 10/114; Urine blood level 3/114; Glycosuria 2/114. Renal function remained stable in most patients, both during study treatment and up to posttreatment week 4 (median change in creatinine clearance [eGFR by Cockcroft–Gault equation], -0.6 to -3 mL/min). None of the 8 patients who had creatinine clearance less than 40 mL/min at baseline had a reduction in creatinine clearance to less than 30 mL/min during therapy. 21 patients (18%) required adjustment in their IS regimen. Thirteen of the 21 required dosage adjustment to manage immunosuppressant levels, 4 to align the dosage with the site’s policy for managing immunosuppressants, 3 to address suspected drug–drug interactions, and 1 because of a skin eruption. 10 patients CNI dose increased; 2 patients CNI dose decreased; 1 patients both CNI reduced and increased.

Serum creatinine (Cr) levels at the end of the treatment showed a minimal and nonsignificant increase: 1.51 mg/dL versus 1.41 mg/dL (P < 0.09); proteinuria was not modified either: 1076 versus 856 mg/24 h (P < 0.5).

The tacrolimus dose tended to increase slightly over the course of the treatment, with a non-statistically significant 2.60±1.82 mg/d at the end of the treatment versus 2.32±1.70 mg/d at the beginning (P = 0.17). Tacrolimus levels did show a significant decrease: 5.89±2.16 ng/mL at the end versus 7.43±1.78 ng/mL pre-treatment (P < 0.001), already seen at the fourth week of treatment (6.03±1.964 ng/mL, P < 0.001).

7/119 Stopping treatment was necessary in 7 cases; 4 of these were treated with 3D: 2 showed serious neurotoxicity attributable to the drug’s interaction with tacrolimus with a major increase in tacrolimus levels, 1 hepatotoxicity, and 1 severe gastrointestinal event. Three patients who were receiving SOF (plus lLDV in 2 cases) and ribavirin showed severe anemia.

Serious problems could be seen in cases of concomitant use of 3D and anti-calcineurin drugs, especially tacrolimus, which question their use or require a very strict and coordinate follow up between hepatologists and transplantation nephrologists.
<table>
<thead>
<tr>
<th>Study</th>
<th>Findings</th>
<th>Patients/Events</th>
<th>N/A</th>
<th>Percent (%)</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gallegos-Orozco et al (21)</td>
<td>Very well tolerated with (2/6) severe adverse events in two of three patients on ribavirin (severe anemia requiring blood transfusions and ribavirin dose reduction) The most frequent adverse events included fatigue (n = 3), headache (n = 2), anemia requiring blood transfusion and erythropoietin injections (n = 2), and nausea (n = 1). Both patients who developed severe anemia (hemoglobin < 8 g/dl) was on ribavirin.</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hussein et al (22)</td>
<td>Very well tolerated. No major adverse events. Two patients required blood transfusion and temporary RBV dose reduction due to anemia 12 weeks after the initiation of treatment.</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>El-Halawany et al (23)</td>
<td>One patient had anemia related to RBV and required dose adjustment with resolution of his anemia.</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fernández et al (24)</td>
<td>Grade 2 or 3 anemia appeared in 14 (33%) RBV and 9 (15%) without RBV. Others adverse events reported were grade 2 and grade 3 hyperbilirubinemia in 4 (4%) and 2 (2%) patients, respectively (all but one in patients taking RBV).</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kirushnan et al (25)</td>
<td>The drugs were well tolerated in the majority. 1 patient required erythropoietin temporarily after RBV therapy.</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Continued
<table>
<thead>
<tr>
<th>Study</th>
<th>Tolerability</th>
<th>Renal Function</th>
<th>Tacrolimus Dose</th>
<th>Immunosuppression Changes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prasad et al (26,27)</td>
<td>Well tolerated except fall in Hb and one required blood transfusion and 3 required EPO</td>
<td>No significant change in renal function</td>
<td>Tacrolimus dose was increased in 10 and decreased in 2 to achieve required trough level</td>
<td>0%</td>
<td>N/A</td>
</tr>
<tr>
<td>Kusnir et al (28,29)</td>
<td>Four patients were complicated by antibody mediated rejection while on Therapy (Could be unrelated to the treatment; however immunosuppression levels were also altered)</td>
<td>N/A</td>
<td>(10/21) Tacrolimus dose adjustments were required in 10 patients to maintain therapeutic levels</td>
<td>0%</td>
<td>N/A</td>
</tr>
<tr>
<td>Lubetzky et al (30,31)</td>
<td>No serious adverse effects Overall, no significant change in proteinuria before and after therapy Increase in protein to creatinine ratio during and after therapy in 6 patients. Additionally, 2 patients have a GFR now of less than 20. (All of the patients who developed worsening proteinuria received SOF+LDV)</td>
<td>No serious infections No patients described headache, fatigue, or nausea. Two weeks after completion of therapy, one patient was admitted and treated for pneumonia.</td>
<td>2 patients had a decrease in tacrolimus levels to less than 4 ng/mL that improved with appropriate adjustment by the treating physician. (1 treated with SOF+LDV+RBV and 1 treated with SOF+RBV.)</td>
<td>0%</td>
<td>Patients with proteinuria or lower GFR should be monitored more closely. Patients with more than 300 mg/g of proteinuria were significantly more likely to develop worsening proteinuria than those with less than 300 mg/g of proteinuria at the start of therapy (<p>0.001). None of the patients with minimal proteinuria had significant changes in proteinuria or serum creatinine levels with therapy. (4/6 had kidney biopsies during or after completion of therapy. Results of these biopsies were variable and included non-specific glomerular changes in 2 cases, diabetic nephropathy in 1 case and moderate IFTA in the fourth case). There was no significant change in Panel Reactive Antibody (PRA) class I or class II post therapy (<p>0.45 and <p>0.13 respectively).</td>
</tr>
<tr>
<td>Martin et al (32)</td>
<td>None of the 21 patients had severe adverse events and none died during treatment.</td>
<td>The average change in SCr was + 16% (SD = 0.67).</td>
<td>Immunosuppression dosage did not change for 15(71%) patients, it was increased for 2 patients, decreased for 3 patients, and changed in both directions for 1 patient.</td>
<td>0%</td>
<td>N/A</td>
</tr>
<tr>
<td>Aull et al (33)</td>
<td>Adverse events included anemia requiring RBV dose reduction or discontinuation (n=2), headache (n=2), acute kidney injury due to tacrolimus toxicity, diarrhea, & worsening blood glucose control (n=1 each). One patient died 4 months after achieving SVR of an unknown cause.</td>
<td>N/A</td>
<td>N/A</td>
<td>2/29 patients self-discontinued DAA. The first patient self-discontinued it due to high blood pressure and numbness in his mouth. The second had anemia and resulting weakness from the ribavirin and discontinued it on his own.</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Table 2. Continued

<table>
<thead>
<tr>
<th>Study</th>
<th>DAA Rx Characteristics</th>
<th>Outcome Measurements</th>
<th>Other Outcome Measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polanco Fernandez et al (34)</td>
<td>There were no episodes of acute rejection or other relevant adverse events</td>
<td>N/A</td>
<td>There were no significant differences in Tac (p=0.911) or MMF levels (p=0.785) between baseline and EOT. Tac doses had to be increased in 92.8% (13/14) of patients by a median of 66.0%.</td>
</tr>
<tr>
<td>Fernandez Ruiz et al (35)</td>
<td>The treatment was well tolerated, with no episodes of adverse events while on therapy or relevant adverse events.</td>
<td>N/A</td>
<td>0% (0/14)</td>
</tr>
<tr>
<td>Sawinski et al (36,37)</td>
<td>Well tolerated</td>
<td>No episodes of AR while on therapy</td>
<td>N/A</td>
</tr>
<tr>
<td>Hatahet et al (38)</td>
<td>DAA Rxs were well tolerated with the exception of dose modification of ribavirin due to anemia.</td>
<td>The mean Scr pre and post DAA Rx was similar (1.4mg/dl)</td>
<td>0% (0/11)</td>
</tr>
<tr>
<td>Snyder et al (39)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Trakroo et al (40)</td>
<td>There were no adverse events requiring cessation of therapy.</td>
<td>All KT recipients had stable renal and liver function during and after the completion of therapy.</td>
<td>N/A</td>
</tr>
<tr>
<td>Kogiso et al (41)</td>
<td>One case was dropped out due to mild fever and renal impairment.</td>
<td>The other cases showed no severe adverse events in liver or renal function.</td>
<td>The tacrolimus concentration was maintained and no substantial dose adjustment was required.</td>
</tr>
</tbody>
</table>

Abbreviations: Estimated glomerular filtration rate (eGFR); Hepatitis C virus (HCV); Ledipasvir (LDV); Paritaprevir-ritonavir (PTV-r); Simeprevir (SIM); Sofosbuvir (SOF); Ombitasvir (OBV); Dasabuvir (DBV); Daclatasvir (DCV); Grazoprevir-Elbasvir (GZR-EBR); Velpatasvir (VEL); Ribavirin (RBV); Serious adverse events (SAEs); Not available (N/A); Kidney transplant (Ktx); Liver transplant (LTx); Calcineurin inhibitor (CNI).
Efficacy of DAAs for treatment of HCV-infected kidney transplant recipients

Of 24 studies, 22 were included in the analysis to assess the effectiveness of DAA treatment for HCV infection among kidney transplant recipients as shown in Table 1. Details regarding HCV genotype, baseline eGFR, DAA regimens, time between transplants to DAA treatment, duration of DAA treatment of each included study were provided in Table 1. The estimated SVR12 rate with DAAs treatment for HCV among kidney transplant patients was 97% (95% CI: 95%-99%; I²=22%), as demonstrated in Figure 2.

Safety of DAAs for treatment of HCV-infected kidney transplant recipients

Of 24 studies, 23 were included in the analysis to assess the safety of DAA treatment for HCV infection among kidney transplant recipients as shown in Table 2. Reported adverse events and drug-related adverse events, adverse event details, change in renal function with DAA treatment, changes in immunosuppression, rate of treatment discontinuation due to serious adverse events of each included study were provided in Table 2. Reported treatment-related serious adverse events included bradycardia with syncope especially co-administration of sofosbuvir (SOF) with amiodarone (1,10), pulmonary embolism (10), gastrointestinal bleeding (1), portal vein thrombosis (1), bacteremia (1), anemia especially with regimens including RBV, and uncommonly increased serum creatinine (10,16). The estimated rate of discontinuation of DAAs treatment for HCV among kidney transplant patients was 2% (95%CI: 1%-3%; I²=0%), as demonstrated in Figure 3.

Evaluation for publication bias

Funnel plots to appraise publication bias regarding the efficacy and safety of DAA treatment in recipients with DAA treatment for HCV infection are presented in Figure S1-S2. Overall, the publication bias was insignificant.

Discussion

In this meta-analysis of 892 kidney transplant recipients, we showed an excellent efficacy of DAA therapy for treatment of HCV infection among kidney transplant recipients with overall estimated SVR12 rate of HCV after DAA therapy in kidney transplant recipients of 97%. Besides, DAA therapy in kidney transplant recipients is well-tolerated with an overall estimated discontinuation rate of 2%.

Before the development of DAA therapy, the use of IFN-based treatment for HCV infection has been restricted to pretransplant administration due to concerns related to acute allograft injury, immune stimulation related allograft rejection, allograft loss, and poor tolerability (1,9). Also, IFN-based regimens have unfortunately been limited in efficacy and poorly tolerated in the end stage renal disease patients (9). Recently, Studies have demonstrated that novel DAA-based antiviral therapies are efficient for HCV patients with stage 4–5 chronic kidney disease with SVR as high as 89% to 94.3% (8,42,43). In this current study, we demonstrated an excellent efficacy of the use of DAAs in post-kidney transplantation setting with pooled estimated SVR12 of 97%.

Despite favorable safety and tolerability profile of DAAs treatment for HCV among kidney transplant patients with only 2% rate of discontinuation of treatment, there are several cautions of DAA therapy and drug-drug interactions bear mention. One of the major reported serious adverse effects was bradycardia with syncope (1,10). Amiodarone is a known inhibitor of P-GP transport, and SOF is partially cleared via the P-GP system (44). A decreased P-GP activity means patients taking amiodarone could be exposed to higher levels of SOF.
which is thought to be the cause of bradycardia. Thus, excellent communication between patients and physicians with transplant center are very important to avoid potential drug-drug interactions (10). In addition, drug-drug interactions between DAA and immunosuppression need to be carefully considered. Calcineurin inhibitor (CNI) levels have been shown to fluctuate during and even after DAA treatment is completed (1,10,11,16-41).

Conclusion
In summary, our meta-analysis shows excellent efficacy and tolerability profiles of DAA therapy for HCV-infected kidney transplant recipients. HCV infection should no longer be a major concern among kidney transplant recipients.

Limitations of the study
There are several limitations of our meta-analysis. First, almost all included studies were observational studies with various DAA regimens. Thus, we can only demonstrate an overall efficacy and tolerability of DAA therapy for HCV infection among kidney transplant recipients. Recently, Colombo et al (10) conducted a multicenter RCT evaluating efficacy and safety of the combination of SOF and LDV in kidney transplant recipients for total of 12 weeks or 24 weeks of treatment. They found this SOF and LDV combination effective and well tolerated among patients with kidney transplantation (Table 1). Second, the majority of patients in the included studies had HCV genotype I, leading to limiting the generalizability of the results to other HCV genotypes. Finally, HCV-infected kidney transplant recipients in most included studies received DAA therapy later than 3 to 6 months post-transplantation. The data on the efficacy and safety of DAA therapy during immediate post-kidney transplant, however, were lacking in the included studies in our meta-analysis.

Acknowledgements
The background and literature reviews of this study were conducted during Dr. Wisit Cheungpasitporn’s presentation at Mayo Clinic on January 20, 2017. The authors are grateful for the input from Dr. Deirdre Sawinski and Dr. Michael D. Leise, and information from authors of included studies, specifically Dr. David Roth, Dr. Michelle Lieberman, Dr. Massimo Colombo, Dr. Nassim Kamar, Dr. Juan F. Gallegos-Orozco, Dr. Jeffrey Campsen, Dr. Sandra Beinhardt, Dr. Narayan Prasad, Dr. Peter Ferenci, Michelle Martin, PharmD and Meredith Aull, PharmD.

Authors’ contribution
All authors had access to the data and a role in writing the manuscript. All authors read and signed the final paper.

Conflicts of interest
The authors declare that they have no conflicting interest.

Ethical considerations
Ethical issues (including plagiarism, data fabrication, double publication) have been completely observed by the authors.

Funding/Support
None

Supplementary Materials
Supplementary Data contains search strategy and Figures S1-S2.

References

37. Sawinski D, Patel N, Appolo B, Bloom RD. Use of HCV+ donors does not affect HCV clearance with directly acting antiviral therapy but shortens the wait time to kidney transplantation. Transplantation. 2016. 10.1097/tp.0000000000001410.

