Antioxidants and cisplatin nephrotoxicity; an updated review on current knowledge

Ramin Tolouian1, Audrey Tolouian2, Farzaneh Dastan3, Vida Farhangi4, Payam Peymani4, Sanam Saeifar5, Oscar Felipe Borja Montes6, Leila Mohmoodnia7, Mohammadreza Khosravifarsani8*, Tella Sadighpour9

1Division of Nephrology, Southern Arizona VA Health Care system and University of Arizona, Tucson, Arizona, USA
2College of Nursing, The University of Texas at El Paso, Texas, USA
3Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
4Department of Medicine, Florida State University, Sarasota, Florida, USA
5College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
6Buchmann Institute for Molecular Life Sciences (BMLS), Cluster of Excellence Frankfurt Macromolecular Complexes (CEF-MC), Goethe University Frankfurt am Main, Frankfurt am Main, Germany
7Department of Internal Medicine, University of New Mexico, New Mexico, USA
8Department of Internal Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
9American University of Antigua College of Medicine, Antigua and Barbuda

*Corresponding author: Mohammadreza Khosravifarsani, Email: drmrkhosravifarsani@gmail.com, kchosravi.mr@skums.ac.ir

Cisplatin is a first-line antitumor drug which is applied in the therapeutic field of numerous kinds of cancers. The main dose-dependent adverse effect of cisplatin is nephrotoxicity in approximately one-third of patients, who received this drug during their treatment. Oxidative stress is one of the most significant mechanisms in cisplatin nephrotoxicity. Cisplatin-induced oxidative stress stimulates apoptosis, inflammation, mitochondrial damage within cells, and endoplasmic reticulum (ER) stress. The administration of an antioxidant in this context could be a suitable approach for preventing of cisplatin nephrotoxicity. Antioxidants are categorized into four classes: dietary antioxidants, free radical scavengers, thiol-containing compounds, and iron chelators.

Keywords: Cisplatin, Oxidative stress, Cancer, Nephrotoxicity, Reactive oxygen species, Antioxidants, Renoprotection

Introduction
Cancer is a significant global illness burden and the second leading cause of death in the world. Cisplatin is one of the first-line antitumor drugs applied in the therapy of numerous types of cancers. However, side effects of this drug, including nephrotoxicity, ototoxicity, gastrointestinal toxicity, neurotoxicity, and allergic reactions limit its use significantly. The main dose-dependent adverse effect of cisplatin is nephrotoxicity (1). Cisplatin nephrotoxicity happens in around one-third of patients, who receive this treatment. Proximal tubular epithelial cells are the primary cells for cisplatin excretion source since renal cytotoxicity persists even with hydration and dose modification.

Cisplatin nephrotoxicity can be mitigated or prevented on multiple levels, such as; intervening in the transport of cisplatin to the renal epithelial cells, aggressive hydration, forced diuresis, chelating agents to diminish cell death, blockade of cyclin-dependent kinase, mitogen-activated protein kinase (MAPK), inhibition of p53 activation, antioxidants supplementation and inflammation blockage (2,3).

Search strategy
For this review, we searched PubMed/Medline, DOAJ (Directory of Open Access Journals), Embase, Web of Science, EBSCO, Scopus, and Google Scholar,
using various keywords including cisplatin, oxidative stress, cancer, nephrotoxicity, reactive oxygen species, antioxidants and renoprotection.

Mechanisms of cisplatin nephrotoxicity
Oxidative stress is one of the main mechanisms of cisplatin nephrotoxicity. Cisplatin-induced oxidative stress stimulates apoptosis, inflammation, mitochondrial damage, and endoplasmic reticulum (ER) stress. Therefore, the administration of antioxidants in this context could be a reasonable option to prevent cisplatin nephrotoxicity. The principal target for cisplatin-induced oxidative stress in mitochondria leads to damage of mitochondrial thiol proteins, blockade of calcium absorption, and a decrease of the physiological function of the respiratory chain to produce energy and subsequent cytochrome c release (4).

Reactive oxygen species (ROS) seem to attack numerous cellular constituents, such as lipids, proteins, and DNA, which trigger multiple signaling pathways within cells/body. Severe damages to these cellular constituents trigger the activation of p53, which is responsible for the transcription of multiple proapoptotic proteins, including two intrinsic and extrinsic apoptotic proteins. The generation of the ROS increases apoptosis via increased expression of the genes that encode the extrinsic apoptotic proteins such as Fas, FasL and subsequenty, increases caspase eight and tumour necrosis factor-alpha (TNF-α) (extrinsic approach) and facilitates Bak/Bax activation and also cytochrome c release (intrinsic approach) (1,2). Cisplatin-induced acute kidney injury is associated with mitochondrial dysfunction as indicated by lipid peroxidation, reduction of essential antioxidants, variations in transmembrane electric potential, variations in calcium uptake, caspase three activations, and apoptosis (3). There are three mechanisms for ROS production during cisplatin nephrotoxicity: a) reduction of related antioxidants such as glutathione peroxidase, glutathione reductase, catalase (CAT), superoxide dismutase (SOD), and glutathione transferase, b) increase in ROS generation by the disruption of the mitochondrial respiratory chain reactions such as increased malondialdehyde levels, increased 8-hydroxy-2’-deoxyguanosine content, increased 4-hydroxynonenal content, and increased lipid peroxides content and c) interaction of microsomal cytochrome P450 (a group of heme proteins) with antimutant platinum complexes (6,7).

Pathways of antioxidants
The nuclear factor E2-related factor 2 (Nrf2) is a transcription factor that responds to oxidative stress. Nrf2 regulates the expression of the antioxidant response element (ARE) dependent genes. ARE genes are regulating the antioxidant enzymes and protein synthesis to adjust the cellular oxidant level and oxidant signaling. ARE genes also influence specific cellular functions, for example, autophagy, inflammation, inflammasome signaling, ER stress, apoptosis, and mitochondrial biogenesis (8). Additionally, the absence of Nrf2 leads to the aggravation of cisplatin nephrotoxicity. Meanwhile, activated Nrf2 mitigates the cytotoxic effects and associated with chemotheraphy.

Heme oxygenase-1 (HO-1) is one of the genes regulated through Nrf2, which catalyzes the degradation of heme into biliverdin, iron ions, and carbon monoxide, while HO-1 and their derivatives prevent oxidative damage (9).

It has been proposed that several antioxidants such as galangin, Wuzhi tablet, melatonin, and sinapic acid exert antioxidant mechanisms via Nrf2/HO-1 signaling pathway.

Suppression of ROS by free radical scavengers, such as dimethyl thiourea (DMTU) and N-acetylcysteine, attenuated p53 activation, shields the tubular cells from apoptosis, and conserves kidney function. Besides ATR-dependent activation of checkpoint kinase 2 (Chk2), other protein kinases and p38 have been involved in p53 activation through cancer treatment. Furthermore, nuclear factor-xB (NF-xB) is another agent that may link ROS with p53 to control cisplatin nephrotoxicity. Thus, antioxidants can cause weak NF-xB activation and protect the kidney from toxicity related to cisplatin (10).

Recently, antioxidants were classified into four classes: dietary antioxidants, free radical scavengers, thiol-containing compounds, and iron chelators (11). In a previous review study, dietary antioxidants are categorized into 11 classes by Gómez-Sierra et al. The classless include capsaicin, curcumin, ellagic acid, epigallocatechin 3-gallate, alpha-lipoic acid, lycopene, quercetin, resveratrol, sulforaphane, tannins, and vitamins. These compounds not only show some nephroprotective effects but also have intensified cisplatin antineoplastic effect, therefore, it could be considered a potential option as an adjuvant therapy with cisplatin (12) (Table 1).

Plant-derived agents
Antioxidant extracts from natural plants have been of interest recently. Notably, natural antioxidants may attenuate ROS from kidneys, without influencing the anticancer effects of cisplatin. It has been shown that the utilization of multiple plant-based agents can protect kidneys against cisplatin nephrotoxicity (13,14). It has also been observed that females are associated with a lesser risk of cisplatin nephrotoxicity. Furthermore, plant-based estrogen may mitigate the risk of cisplatin nephrotoxicity significantly (15).

New antioxidants
Several antioxidants have been shown to diminish oxidative stress. Antioxidant phytochemicals including tocopherols, flavonoids, carotenoids, and phenolic compounds can act as reducing agents that prevent oxidation induced by iron ions and free radicals. Antioxidants protect biomolecules from injury induced by both reactive oxygen and nitrogen.
species (ROS and RNS). Intracellular effects of cisplatin nephrotoxicity cause a decrease in sodium, potassium, and magnesium and lead to the increment of calcium in the plasma. Magnesium supplementation through chemotherapy with cisplatin has a nephroprotective effect without reduction of antitumor efficiency. Antioxidants and their effective pathways are presented in Table 2.

For instance, astaxanthin shows antioxidant activities via the scavenging of free radicals and protection against chain reactions. The astaxanthin is easily found in natural or synthetic sources in nutritional supplements (28). Likewise, galangin increases anti-oxidative enzyme activity like SOD and CAT in the renal tissue in addition to inhibition of TNF-alpha and interleukin-6 (IL-6) in mice model (18).

During an experimental study, the administration of methanolic leaf extract of Apodytes dimidiata was able to prevent acute renal toxicity in a rat model after exposure to cisplatin by scavenging ROS and RNS. It is possible that the nephroprotective effect of Apodytes dimidiata might be related to multiple ROS scavengers such as saponins, tannins, steroids, polyphenols and flavonoids also metal chelators due to the existence of numerous hydroxyl groups (29).

It has also been shown that melatonin has a role in the inhibition of cisplatin nephrotoxicity. This protective effect of melatonin is referred to as its antioxidant, anti-inflammation and anti-apoptosis effects. Melatonin counteracts free radicals through complex formation, proton transmission, and donation/acceptance of electrons and finally reduction oxidative stress and rise the anti-oxidant enzymes level via Nrf2 activation (25).

A retrospective cohort study presented that concurrent use of proton pump inhibitors with cisplatin may improve nephrotoxicity (30). It is clearly demonstrated that Omeprazole, a proton pump inhibitor, has a nephroprotective effect against cisplatin nephrotoxicity by reducing oxidative stress, inflammation, and apoptosis (20). In an experimental model, venlafaxine reduced the sensitivity of kidneys and bladder to cisplatin. This effect was mediated by decreasing renal oxidative stress and increasing renal nitric oxide and its derivatives (19). Based on another report, the renoprotective properties of the methanol leaf extract of Delonix regia was observed. This extract reduced the induced mATPase activity and works as a result decreased additional ATP hydrolysis (21).

Astilbin powerfully caused Nrf2 activation and induced the expression of Nrf2-mediated antioxidant genes such as Nrf2-mediated pathway, Suppression of oxidative stress and inflammation, Inhibitor for the ROS/IN/NF-kB/P38 MAPK signaling pathways, and ROS scavengers and metal chelators.

Table 1. The types of antioxidants

<table>
<thead>
<tr>
<th>Antioxidant</th>
<th>Published before</th>
<th>Recently years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dietary antioxidants</td>
<td>Selenium, some vitamins, and some flavonoids (such as quercetin and Silibinin), and Licochalcone A</td>
<td>Dietary antioxidants in 11 classes (12)</td>
</tr>
<tr>
<td>Free radical scavengers</td>
<td>dimethylthiourea (DMTU), dimethyl sulfoxide (DMSO), and edaravone</td>
<td>Edarabone, N N’-diphenyl-1, 4-phenylenediamine (DPPD)</td>
</tr>
<tr>
<td>Thiol-containing compounds</td>
<td>N-acetylcysteine, sodium thiosulphate, Lipoic acid, Amifostine</td>
<td>D-methionine, S-allylmercaptocysteine</td>
</tr>
<tr>
<td>Iron chelators</td>
<td>Deferrioxamine (DFO), 1,10-phenanthroline, 2,3-dihydroxybenzoic, 20-tetrakis(4-sulfonatophenyl) porphyrinatoiron(lll) (FeTPPS)</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 2. Recently published antioxidants

<table>
<thead>
<tr>
<th>Antioxidants</th>
<th>Reference</th>
<th>Pathway</th>
</tr>
</thead>
<tbody>
<tr>
<td>American ginseng berry extract</td>
<td>16</td>
<td>Activation of MAPK and NF-xB signaling pathways</td>
</tr>
<tr>
<td>Wuzhi tablet</td>
<td>17</td>
<td>Nrf2-mediated pathway</td>
</tr>
<tr>
<td>Galangin</td>
<td>18</td>
<td>Via inhibition of ERK and NF-xB signaling</td>
</tr>
<tr>
<td>Venlafaxine</td>
<td>19</td>
<td>Protects the urinary bladder from hypersensitivity to acetylcholine</td>
</tr>
<tr>
<td>Omeprazole</td>
<td>20</td>
<td>Transporter function NF-xB and JAK-STAT3/6</td>
</tr>
<tr>
<td>Delonix regia leaves</td>
<td>21</td>
<td>Suppression of mATPase activity, reduced release of cytochrome c and caspase 3 activation</td>
</tr>
<tr>
<td>Rutin</td>
<td>22</td>
<td>Inhibitor for the ROS/IN/NF-kB/P38 MAPK signaling pathways</td>
</tr>
<tr>
<td>Sinapic acid</td>
<td>23</td>
<td>Nrf2/HO-1 pathway</td>
</tr>
<tr>
<td>Zingerone</td>
<td>24</td>
<td>Suppression of oxidative stress and inflammation</td>
</tr>
<tr>
<td>Melatonin</td>
<td>25</td>
<td>Nrf-2/HO-1 pathway</td>
</tr>
<tr>
<td>Danshen</td>
<td>26</td>
<td>Nrf2-mediated Pathway</td>
</tr>
<tr>
<td>Astilbin</td>
<td>27</td>
<td>Nrf2 mediated pathway</td>
</tr>
<tr>
<td>Astaxanthin</td>
<td>28</td>
<td>scavenge of free radicals and protection against chain reactions</td>
</tr>
<tr>
<td>Apodytes dimidiata</td>
<td>29</td>
<td>ROS scavengers and metal chelators</td>
</tr>
</tbody>
</table>
as glutamate-cysteine ligase modifier in cisplatin-induced human embryonic kidney 293 cells (27).

Organosulfur compound

Over the years, it has been shown that compounds containing sulfur such as glutathione have an impact on the metabolism of platinum-based therapies. Amifostine and dimesna (external analogs) lessen the nephrotoxicity of platinum-based therapies (31).

S-allylmercaptocysteine, one of the garlic-derived organosulfur compounds, has antioxidant, anti-inflammatory function and anti-apoptotic effect and decreases NF-kB activity from one side/hand, and increased Nrf2 and NAD(P)H from the other side/hand: quinone oxidoreductase 1 (NQO1) gene expression and decreased inflammatory cytokine levels (32).

D-methionine is an organosulfur amino acid and has complex properties for scavenging free radicals. Oral D-methionine showed some antioxidant efficiency by blockage of malondialdehyde leading to increasing glutathione concentration and CAT activity in kidney homogenate. Co-administration of D-methionine along with cisplatin may intensify chemoprotection characteristics (33).

Iron chelators

It has been shown that cisplatin induces a substantial increase in iron release in kidney cells while iron chelator supplementation like deferoxamine (DFO), and 2,3-dihydroxybenzoic acid, considerably weaken the cytotoxicity of cisplatin (7). These iron chelator effects are independent of antioxidant properties. Increased iron levels catalyze ROS/RNS reactions involved in different renal diseases. DFO decreases renal damage and lipid peroxidation induced by cisplatin; while at the same time increasing non-protein thiol group concentrations such as SOD within the kidney tissue (15).

Conclusion

In summary, cisplatin cytotoxicity is mediated by ROS generation, reducing antioxidant enzymes and activation of apoptosis and inflammation pathways significantly. Administration of an antioxidant in this context could be a suitable approach for the prevention of cisplatin nephrotoxicity. Using antioxidants as adjuvant therapy to increase the antineoplastic effect and reduce nephrotoxicity is recommended.

Authors’ contribution

Conflicts of interest

The authors declare that they have no competing interests.

Ethical issues

Ethical issues (including plagiarism, data fabrication, double publication) have been completely observed by the authors.

Funding/Support

None

References

