Antihypertensive effects of SGLT2 inhibitors; a letter to the editor on new concepts

Rahimeh Eskandarian, Mohammad Memarian, Samira Mehrabi Pari

Clinical Research Development Unit, Kowsar Educational, Research and Therapeutic Hospital, Semnan University of Medical Sciences, Semnan, Iran

ABSTRACT

SGLT2 inhibitors, primarily used to treat diabetes, have shown potential antihypertensive effects by reducing blood pressure through mechanisms like natriuresis, diuresis, and weight loss. These medications may also improve arterial stiffness and reduce inflammation, impacting to their blood pressure-lowering properties.

Keywords: SGLT2 inhibitors, Chronic kidney disease, Hypertension, Cardiovascular events, Heart failure, Natriuresis, Type 2 diabetes mellitus, Aldosterone, Sodium–glucose cotransporter 2 inhibitors

Introduction

Sodium–glucose cotransporter 2 (SGLT2) inhibitors appear to be a promising new class of antihypertensive agents with pleiotropic cardiorenal protective effects, making them a valuable addition to the treatment of hypertension in high-risk populations.

Molecular mechanisms of antihypertensive effects of SGLT2i

SGLT2 inhibitors increase glucose excretion in the urine, leading to osmotic diuresis and natriuresis. This results in a reduction in blood volume and subsequently lowers BP. SGLT2 inhibitors also have been shown to reduce arterial stiffness, which is a key factor in the development of hypertension. Moreover, SGLT2 inhibitors have been found to improve endothelial function, which plays a role in regulating BP. Additionally, SGLT2 inhibitors have been shown to reduce sympathetic nervous system activity, which can contribute to hypertension. Furthermore, SGLT2 inhibitors have been shown to modulate the renin-angiotensin-aldosterone system, leading to a decrease in angiotensin II levels and aldosterone secretion, both of which can contribute to hypertension. Other mechanisms consisted of reducing insulin, leptin, and blood glucose levels, across with improving insulin resistance and hyperinsulinemia. Previous investigations showed improving anemia following treatment by SGLT2i, could reduce carotid body activation. Treatment with these agents will be accompanied by reducing sodium volume and protein-bound uremic toxins, inhibiting activation of the anteroventral third ventricle region of the hypothalamus. Recent studies showed an inhibition of the crosstalk between inflammation and oxidative stress, reducing production of reactive oxygen species and pro-inflammatory mediators.

Corresponding author: Samira Mehrabi Pari, Email: drmehrabipari@gmail.com
AMPK, inhibition of NHE1, and upregulation of SIRT1, will attenuate the pathological cardiac remodeling too (4). SGLT2 inhibitors have been found to have pleiotropic effects, including anti-inflammatory and antioxidant properties, which may contribute to their cardiorenal protective effects (5). These agents have been detected to reduce the risk of cardiovascular events, hospitalization for heart failure, and the progression of kidney disease in patients with type 2 diabetes and established cardiovascular disease or kidney disease too (5). Likewise, SGLT2 inhibitors have been found to reduce albuminuria, which is a marker of kidney damage and a predictor of kidney disease progression (6). Similarly, SGLT2 inhibitors have been associated with changes in lipid metabolism, which may contribute to their cardioprotective effects (6). One of the interesting effects of SGLT2 inhibitors is reduction in fat mass (7,8), which could be another explanation for anti-hypertensive efficacy of this class.

Potential side effects of SGLT2 inhibitors for hypertension
SGLT2 inhibitors are associated with an increased risk of urinary tract infections and genital mycotic infections (9). Due to their diuretic effect, SGLT2 inhibitors can lead to dehydration and low BP, especially when used in combination with other antihypertensive medications (9,10). SGLT2 inhibitors may also increase the risk of hypoglycemia, particularly in patients taking concomitant anti-diabetic medications like insulin or sulfonylureas (10). Besides, SGLT2 inhibitors can cause imbalances in electrolytes such as potassium, sodium, and magnesium, which may lead to adverse effects like muscle cramps or cardiac arrhythmias (9). In addition, there have been reports of acute kidney injury associated with the use of SGLT2 inhibitors, particularly in patients with underlying kidney disease or dehydration (9-12). Meanwhile, SGLT2 inhibitors have been linked to an increased risk of euglycemic diabetic ketoacidosis, a serious condition characterized by high levels of ketones in the blood (13). Finally, few studies suggest a potential association between SGLT2 inhibitors and an increased risk of bone fractures, although the evidence is not conclusive (14).

Conclusion
The antihypertensive effects of SGLT2 inhibitors are mediated by several molecular mechanisms consisting of osmotic and natriuretic diuresis in the early stages of treatment, leading to decreased circulating plasma volume. Suppression of sympathetic nervous system activity in the long term is also another potential mechanism of antihypertensive efficacy of SGLT2. The BP-lowering effect appears to be a dose-independent class effect. It should remember that SGLT2 inhibitors should be considered as an adjuvant antihypertensive therapy.

Authors’ contribution
Conceptualization: Rahime Eskandarian.

References
8. Brown E, Wilding JPH, Barber TM, Alam U, Cuthbertson DJ. Weight loss variability with SGLT2 inhibitors and GLP-

Copyright © 2024 The Author(s); Published by Society of Diabetic Nephropathy Prevention. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.