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Implication for health policy/practice/research/medical education:
In earthquake-related acute kidney injury (AKI), the pre-existing conditions such as diabetes mellitus, chronic renal failure, 
hypertension, and dehydration significantly exacerbate the risk and severity of earthquake-related kidney injury. These 
conditions impair renal function and reduce the kidney’s ability to handle additional stressors, leading to worse outcomes.
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Acute kidney injury (AKI) is a critical complication that can arise in the aftermath of earthquakes, 
particularly due to crush syndrome, which is the second most frequent cause of mortality in such 
disasters. The causes of AKI in earthquake victims are multifactorial, including direct renal trauma, 
hypovolemia, rhabdomyolysis and hemodynamic alterations. Rhabdomyolysis, the breakdown 
of damaged muscle tissue, is a primary contributor, releasing intracellular components into the 
bloodstream that can overwhelm the kidneys. Patients with chronic kidney disease (CKD), diabetes, 
or hypertension are more susceptible to AKI. These conditions impair renal function, making the 
kidneys more vulnerable to additional stressors such as dehydration or rhabdomyolysis.
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Introduction
Earthquake, as a devastating natural disaster, often leads 
to numerous medical complications, with acute kidney 
injury (AKI) being a significant concern among crush 
syndrome casualties (1). Crush syndrome, or traumatic 
rhabdomyolysis, arises from muscle destruction products 
entering the systemic circulation after prolonged 
compression and subsequent reperfusion (2). Acute 
kidney injury, is a life-threatening complication of crush 
syndrome, and a common cause of death following 
earthquakes (3). The incidence of acute renal failure 
ranges from 2% to 50% across earthquakes, influenced 
by building resilience, rescue speed, and local healthcare 
capacity (4). Earthquake-related AKI is preventable with 
rapid rescue, early hydration, and monitoring of clinical/
laboratory markers like myoglobin and creatine kinase 
(5,6). Predictive tools like SAFE-QUAKE enhance triage 
efficiency, particularly in resource-limited settings (7,8). 
Previous studies showed that, crush syndrome-induced 
AKI arises from three primary pathways, consisted 
of hypovolemia due to dehydration, hemorrhage, or 

third-spacing into damaged muscles, across with direct 
tubular injury from myoglobin toxicity, cast formation, 
or oxidative stress and in some condition, obstruction 
of pelvic trauma or urinary tract damage (9, 10). At this 
condition, the released myoglobin from crushed muscles 
accumulates in renal tubules. Then in proximal tubules, 
heme from myoglobin generates reactive oxygen species 
by iron-mediated pathways, causing oxidative stress and 
tubular necrosis (11). Myoglobin then binds to Tamm-
Horsfall protein in distal tubules, forming obstructive 
casts that impair urine flow (11). Pharrell to the above 
conditions, damaged muscles absorb sodium and water, 
causing third-spacing and hypovolemia, which followed 
by reduced renal blood flow leads to prerenal acute renal 
failure (9). Additionally, severe hypovolemia can progress 
to shock, exacerbating ischemic kidney injury (9,12). It 
should remember that, prolonged muscle compression 
also leads to rhabdomyolysis, releasing myoglobin and 
other toxic substances that cause tubular injury and 
obstruction (13,14). Similarly, reduced renal perfusion 
during entrapment followed by reperfusion upon rescue 
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generates reactive oxygen species, exacerbating renal 
damage (14,15). Correspondingly, systemic inflammation 
from trauma and infections triggers cytokine release, 
further impairing renal function (14,16). This review 
aims to provide an overview of the factors associated with 
acute renal failure in earthquake-related crush syndrome, 
focusing on the clinical and laboratory parameters that 
can aid in predicting and managing this critical condition.

Search strategy
For this review, we searched PubMed, Web of Science, 
EBSCO, Scopus, Google Scholar, Directory of Open Access 
Journals (DOAJ) and Embase, using different keywords 
like; acute kidney injury, chronic kidney disease, acute 
renal failure, rhabdomyolysis, earthquake, chronic renal 
failure and hypovolemia

AKI in crush syndrome
Prior investigations found that, the extent of muscle injury 
is directly correlated with the risk of developing acute 
renal failure (17). The anatomical location of injuries also 
matters, with lower extremities being more frequently 
affected during earthquakes. Moreover, the presence 
of additional injuries, such as fractures to the pelvis, 
acetabulum, or vertebra, is associated with increased levels 
of creatinine, potassium, and myoglobin, although no 
direct relationship was detected amongst these additional 
injuries and the happening of renal failure (18,19). 
These clinical observations highlight the importance of 
assessing the overall injury burden in predicting AKI risk 
among earthquake survivors (20). Accordingly, the total 
entrapment time, defined as the duration under debris 
plus the time to evacuation, is a critical factor influencing 
the severity of crush syndrome and the likelihood of acute 
renal failure (20,21). Moreover, prolonged immobilization, 
even without direct compression, can result to crush 
syndrome (22). Studies have demonstrated significant 
correlations amid total entrapment time and initial serum 
concentrations of potassium, creatine kinase, myoglobin, 
lactate dehydrogenase, uric acid, creatinine, and blood 
urea nitrogen (23,24). These correlations suggest that 
longer entrapment times exacerbate muscle damage and 
increase the risk of acute renal failure (25). Furthermore, 
a noteworthy difference was observed in total entrapment 
time exceeding 6 hours amongst individuals with kidney 
failure and those without, indicating that prolonged 
entrapment substantially elevates the risk of kidney 
injury (18,19). This finding emphasizes the need for rapid 
evacuation and treatment to mitigate the detrimental 
effects of prolonged compression and ischemia on kidney 
function (26,27).

Pre-existing factors associated with earthquake-related 
AKI
Patients with pre-existing chronic kidney disease 
(CKD) are at a significantly higher risk of developing 

AKI following crush injuries (28). Chronic renal failure 
compromises renal reserve, making the kidneys more 
susceptible to further damage (29). Studies have shown 
that CKD patients are more likely to experience severe 
acute renal failure and have poorer outcomes compared 
to those with normal kidney function (30). Moreover, 
elderly individuals are more vulnerable to acute renal 
failure due to age-related decline in renal function and 
reduced physiological resilience (31). The combination 
of trauma, dehydration, and metabolic imbalances during 
earthquakes exacerbates this vulnerability (32). Diabetes is 
also a well-established risk factor for AKI. Hyperglycemia, 
endothelial dysfunction, and microvascular complications 
impair renal autoregulation, increasing the likelihood of 
acute renal failure in earthquake victims with diabetes 
(33). Accordingly, earthquake-induced stress and 
trauma can elevate blood pressure and worsening renal 
outcomes (34). In addition, earthquake victims often 
suffer from dehydration due to limited access to water 
and prolonged entrapment. Hypovolemia reduces renal 
perfusion, leading to pre-renal AKI, which can progress 
to intrinsic renal injury if not promptly addressed (20). 
Similarly, earthquake-related injuries often lead to 
infections, which can precipitate AKI through systemic 
inflammation, hemodynamic instability, and direct renal 
damage (35). Sepsis is a particularly potent risk factor 
for AKI in this context (36). Prior studies also showed, 
obesity and metabolic syndrome are associated with 
chronic inflammation, insulin resistance, and endothelial 
dysfunction, all of which predispose individuals to acute 
renal failure (37,38). The metabolic stress induced by 
earthquakes further compounds these risks (37,38). 
Finally, certain medications, such as non-steroidal anti-
inflammatory drugs, renin-angiotensin system inhibitors, 
and diuretics, can exacerbate acute renal failure by 
impairing renal hemodynamics or causing direct 
nephrotoxicity. Earthquake victims on these medications 
are at higher risk (39).

Electrolyte and metabolic derangements 
Potassium released from muscle cells causes cardiac 
arrhythmias, reducing cardiac output and worsening 
renal ischemia (40). Elevated phosphate binds calcium, 
forming nephrotoxic calcium-phosphate crystals that 
obstruct tubules (acute phosphate nephropathy). Further, 
muscle breakdown releases lactate and sulfate, lowering 
blood pH and impairing renal function (41). One of the 
important features of this condition is cytokine storm, 
while proinflammatory mediators (e.g., tumor necrosis 
factor alpha [TNF-α] and interleukin 6) from injured 
muscles and activated macrophages amplify systemic 
inflammation, worsening endothelial and tubular damage 
(42,43). Additionally, leukocyte extracellular traps 
contribute to intraperitoneal and systemic inflammation, 
accelerating muscle and kidney injury in experimental 
models (44). Notably, untreated compartment syndrome 
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exacerbates muscle necrosis, perpetuating the release of 
toxic metabolites and increasing AKI risk (13). Here, there 
is also a crosstalk between inflammation and ferroptosis. 
Myoglobin degradation releases free iron, which promotes 
lipid peroxidation and ferroptosis as an iron-dependent 
cell death in renal tubules (45). Likewise, damage-
associated molecular patterns (DAMPs) activate TLR4/
NF-κB pathways, linking inflammation to ferroptosis and 
further exacerbating tubular damage (43,46). Similarly, 
DAMPs from crushed muscles activate the complement 
system (e.g., C5a), driving macrophage infiltration into 
kidneys and amplifying inflammation (47). Recent 
studies showed that, in crush syndrome models, the 
inflammatory mediators (e.g., TNFα, dsDNA) peak 
earlier in the peritoneal cavity than in serum, suggesting 
localized inflammation precedes systemic SIRS (systemic 
inflammatory response syndrome) (44,48,49). Then 
untreated intraperitoneal inflammation propagates to 
the bloodstream, amplifying renal oxidative stress and 
kidney tissue injury (35). It should remember that, SIRS-
induced capillary leakage worsens renal hypoperfusion, 
exacerbating prerenal acute renal failure (18). Moreover, 
inflammatory cytokines impair mitochondrial function, 
worsening acidosis and tubular dysfunction (50). 

Predictive laboratory parameters
Early and continuous monitoring of kidney function is 
crucial for detecting AKI in crush syndrome patients (5). 
While plasma creatinine and blood urea nitrogen levels are 
late indicators of kidney damage, other blood parameters 
such as creatine kinase, myoglobin, lactate dehydrogenase, 
and uric acid can provide earlier indications of AKI risk 
(13). The study by Köroğlu et al, suggests a myoglobin 
value beyond 2330 mg/dL upon hospital admission 
demonstrated high sensitivity for predicting AKI, while 
an initial plasma uric acid value more than 6.36 mg/
dL had the utmost specificity (51). They also showed, a 
mean plasma creatine kinase level above 9290 U/L during 
patient follow-up predicted acute kidney failure with 79% 
sensitivity and specificity (51). 

Focus on management
Adequate hydration can mitigate pre-renal acute renal 
failure and reduce the risk of progression to intrinsic renal 
injury (52). Elderly individuals, diabetics, and those with 
chronic renal failure or hypertension should be closely 
monitored for signs of AKI (33). Accordingly, adjusting 
or discontinuing nephrotoxic medications can reduce the 
risk of AKI (53). Besides, early treatment of infections 
and sepsis is essential to prevent acute renal failure (54). 
Amputation, while a difficult decision, may be required 
in cases of irreversible tissue damage or progressive 
clinical deterioration (25). Statistical improvements 
were observed in creatine kinase, myoglobin, creatinine, 
potassium, and uric acid levels among individuals who 
underwent amputation (24,25,55). However, the decision 

to perform an amputation must be carefully considered, 
as it carries its own risks and potential complications 
(25). Treatment protocols often consisted of sodium 
bicarbonate and mannitol to optimize myoglobin 
solubility and promote excretion in urine, although 
the efficacy of these adjunctive therapies remains 
controversial (21). Extracorporeal technologies such as 
dialysis are necessary once renal disturbance is established 
or significant hyperkalemia happens (21,25). Emerging 
mechanism-based treatments include inhibition of 
myoglobin endocytosis using cilastatin, which has 
shown renoprotective effects in preclinical studies (11). 
Oxidative damage amelioration strategies involve the use 
of antioxidants although their effectiveness varies (56). 
Immune-targeting treatments, such as inhibitors of IL-1β 
signaling and therapies targeting neutrophils and MET 
formation, are also under investigation (11). Kidney-
targeted delivery systems, comprising microbubbles and 
nanoparticles are being explored to deliver drugs and 
proteins specifically to the kidney, enhancing bioactivity 
and reducing toxicity (57). Several investigations showed 
that, elevated serum uric acid levels are associated with 
kidney disease (58). Despite its antioxidant properties, 
uric acid can promote oxidative stress, inflammation, 
and endothelial dysfunction (59). Studies suggest that 
elevated uric acid levels in rhabdomyolysis patients may 
be associated with an increased risk of acute renal failure 
(60,61). 

Conclusion
Earthquake-related crush syndrome poses a significant 
threat to kidney function, with AKI being a major cause 
of morbidity and mortality. Factors such as the number of 
affected extremities, total entrapment time, and specific 
laboratory parameters play critical roles in predicting the 
development and severity of AKI.
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