

http://www.jnephropharmacology.com

Journal of Nephropharmacology

DOI: 10.34172/npj.2020.16

The K469E genetic variant in the *ICAM1* gene is associated with type 2 diabetes but not with its vascular complications: a meta-analysis

Saikrishna Lakkakula¹⁰, Henu Kumar Verma²⁰, Bhaskar V.K.S. Lakkakula³

¹Department of Zoology, Visvodaya Government Degree College, Venkatagiri, India ²Stem Cell Laboratory, Institute of Endocrinology and Oncology, Naples, Italy ³Sickle Cell Institute Chhattisgarh, Raipur, India

ARTICLEINFO	A B S T R A C T
Article Type: Original	Introduction: Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by diminished insulin secretion and hyperglycemia leading to damage of multiple organs. The
<i>Article History:</i> Received: 18 June 2019 Accepted: 3 September 2019 Published online: 19 October 2019	present study is aimed to test the association between type 2 diabetes vascular complications and K469E variant (rs5498) of the intercellular adhesion molecule-1 (<i>ICAM1</i>) gene. Methods: Online databases were searched to retrieve all publications relating to the ICAM1 rs5498 variant in human diabetic vascular complications. In the present meta-analysis, we included all eligible studies and calculated the pooled results using MetaGenyo web tool.
<i>Keywords:</i> Type 2 diabetes Retinopathy Nephropathy	Results: Studies concerning <i>ICAM1</i> gene K469E variant association with either type 2 diabetes or diabetes related vascular complications were included in this meta-analysis. Fifteen articles were included in this analysis (n=10 for T2DM; n=5 for diabetes nephropathy; n=8 for diabetes retinopathy). <i>ICAM1</i> K469E variant significantly increased the risk of T2DM in the allelic (OR = 1.10, 95% CI: 1.01-1.20, P = 0.032) and recessive models (OR = 1.27, 95% CI: 1.08-1.49, P = 0.004). However, the <i>ICAM1</i> gene K469E variant is not associated with diabetic nephropathy or diabetic retinopathy. No noticeable evidence of publication bias was detected. Conclusion: In summary, our study indicated that <i>ICAM1</i> K469E variant was significantly associated with the increased risk of diabetes but not with the diabetic vascular complications.

Implication for health policy/practice/research/medical education:

Diabetes mellitus is a chronic metabolic disease characterised by diminished insulin secretion and hyperglycemia leading to damage of multiple organs. Intracellular adhesion molecule 1 (ICAM1) is a cell surface glycoprotein that expressed in endothelial cells as well as leucocytes. Several studies have examined the relationship between ICAM1 K469E genetic variant and diabetic vascular complications; however, the results are inconclusive. We performed a meta-analysis of ICAM1 K469E studies. Our study indicated that the ICAM1 K469E variant was significantly associated with the increased risk of diabetes, but not with the diabetic vascular complications.

Please cite this paper as: Lakkakula S, Verma HK, Lakkakula BVKS. The K469E genetic variant in the *ICAM1* gene is associated with type 2 diabetes but not with its vascular complications: a meta-analysis. J Nephropharmacol. 2020;9(2):e16. DOI: 10.34172/ npj.2020.16.

Introduction

Diabetes mellitus is a chronic metabolic disease characterized by diminished insulin secretion and hyperglycemia leading to damage of multiple organs (1). Long-term diabetes is associated with the damage of macro and microvasculature of various organs and increases the risk for cardiovascular diseases (2). The diabetic retinopathy (DR), diabetic nephropathy (DN) and diabetic neuropathy are the main microvascular complications. Coronary artery disease, peripheral vascular disease, and stroke are major macrovascular complications. Although the exact mechanisms underlying diabetic vascular complications are not fully understood, a common pathological hallmark is the presence of endothelial dysfunction and followed by inflammation (3,4). Lowering blood glucose and controlling blood pressure is the main therapeutic approach to manage the vascular complications of diabetes. Diabetic nephropathy occurs in 30%-40% of diabetic patients and DR affects up to 80% of long standing diabetes patients. Recent studies have shown that the DR itself is a predictive factor for DN (5,6).

Lakkakula S et al

Diabetes, DN and DR are multifactorial and polygenic diseases that are influenced by both environmental and genetic factors. It has been shown that some genetic variants predispose individuals to diabetes and diabetic vascular complications (7). Intercellular adhesion molecule 1 (ICAM1) is a distinct cell surface glycoprotein that expressed in endothelial cells as well as leukocytes. Several lines of evidence demonstrated that the ICAM1 play a major role in the pathogenesis of diabetes, DN and DR (8,9). The gene coding for ICAM1 has been mapped to chromosome 19p13.2. Two genetic variants of the ICAM1 gene (K469E and G241R) have been identified and studied for their association with vascular complications in various diseases (10-13). The K469E variant (rs5498) is located in exon 6 and encodes Ig-like domain 5-Lys or Glu (14). This substitution was known to affect the topology of ICAM1. Several studies have examined the relationship between ICAM1 K469E genetic variant and diabetic vascular complications; however, the results are inconclusive (12,15-18). Hence we conducted this metaanalysis to investigate the relationship between ICAM1 K469E variant and type 2 diabetes and related vascular complications.

Materials and Methods

Literature search

Studies assessing the association between diabetic vascular complications and *ICAM1* K469E variant were identified through searching the PubMed, Web of Science and Embase databases. The retrieval strategy was covering the search terms "*ICAM1*, 1462A>G, K469E; rs5498, type 2 diabetes, diabetic complications, diabetic nephropathy, diabetic retinopathy, intercellular adhesion molecule-1, gene polymorphism, genetic variant". The last search update was conducted on July 31, 2019. No language restrictions were imposed. From all suitable studies, name of the first author, year of publication, country of publication, ethnicity, genotyping method, genotypes from both cases and controls were collected.

Statistical analysis

The association between diabetic vascular complications and *ICAM1* K469E variant was assessed by odds ratio (OR) with a 95% confidence interval (CI). Allelic and dominant genetic models were adopted to estimate the pooled OR and 95% CI. To evaluate the between-study heterogeneity, we used Q and I² statistics. Egger's test and Begg's funnel plot was used to determine the publication bias. All statistical analysis were done using a web tool MetaGenyo (19).

Results

The literature selection process is depicted in Figure 1. There are 15 articles that deal with the ICAM1 gene K469E variant association with either type 2 diabetes or

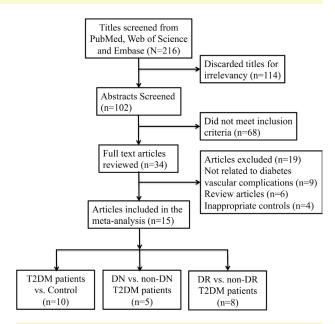


Figure 1. Flow diagram depicting the detailed process of systematic literature review.

diabetes-related vascular complications. Of the fifteen articles selected, genotype data for pooled analysis of type 2 diabetes mellitus (T2DM), DN and DR comparisons were found respectively in 10, 5 and 8 articles. General characters and genotype data of the studies selected for this meta-analysis were presented in Table 1.

Meta-analysis of T2DM and ICAM1 gene K469E variant Ten studies with a total of 2685 T2DM and 2193 controls were finally included in meta-analysis (12,17,18,20-26). The pooled effect estimates under meta-analysis revealed that the ICAM1 K469E variant is significantly associated with T2DM in the allelic model (G vs. A; OR = 1.10, 95% CI: 1.01-1.20, P = 0.032) and recessive model (GG vs. AG+AA; OR = 1.27, 95% CI: 1.08-1.49, P = 0.004) (Figure 2A). The pooled effect estimates in dominant model is not statistically significant (AG+GG vs. AA; OR = 1.08, 95% CI: 0.82-1.41, P = 0.594) (Table 2). The present meta-analysis allelic and recessive models did not reveal significant heterogeneity among studies (I² ranged from 0 to 0.13). There is no apparent asymmetry in the funnel plot shape (Figure 3A). In support of this, Egger's test also did not reveal the signs for publication bias (Table 2). Further subgroup analyses based on ethnicity revealed statistically significant association between T2DM and ICAM1 K469E variant in Asians but not in Caucasians (GG versus AG+AA; Asians OR = 1.27, 95% CI: 1.051.52, P = 0.011; Caucasian OR = 1.27, 95% CI: 0.90-1.78, P = 0.173).

Meta-analysis of DN and ICAM1 gene K469E variant

Five studies with a total of 1031 T2DM patients with nephropathy and 996 T2DM patients without nephropathy

Table 1. Characteristics of the studies assessing the association between ICAM1 K469E variant and risk of type 2 diabetes and vascular complications

No.	Reference	Ethnicity	Country	Genotyping	AA	AG	GG	AA	AG	GG	HWE P values
T2DM vs. Control						T2DM			Control		
1	(20)	Asian	Japan	PCR-RFLP	152	158	50	61	73	18	0.587
2	(21)	Asian	China	PCR-HA SSCP	97	20	55	28	42	10	0.343
3	(22)	Asian	China	PCR-RFLP	22	48	30	19	46	33	0.680
4	(23)	Asian	China	PCR-RFLP	39	96	54	30) 54 27		0.782
5	(24)	Asian	China	PCR-RFLP	30	14	2	21	8	1	0.827
6	(25)	Asian	China	PCR-RFLP	54	45	21	75	51	24	0.005
7	(17)	Asian	China	TaqMan genotyping	192	152	41	330	292	50	0.181
8	(26)	Asian	Malaysia	TaqMan genotyping	23	451	106	59	412	91	<0.001
9	(18)	Caucasian	Turkey	PCR-RFLP	39	66	33	41	75	22	0.205
10	(12)	Caucasian	Slovakia	TagMan genotyping	172	306	117	59	105	36	0.365
DN vers	DN versus non-DN T2DM patients					DN Non-DN T2DM					
11	(22)	Asian	China	PCR-RFLP	24	54	16	22	48	30	0.735
12	(23)	Asian	China	PCR-RFLP	13	49	32	26	47	22	0.932
13	(26)	Asian	Malaysia	TaqMan genotyping	8	261	34	15	190	72	<0.001
14	(17)	Asian	China	TaqMan genotyping	207	169	26	193	152	41	0.182
15	(18)	Caucasian	Turkey	PCR-RFLP	39	66	33	41	75	22	0.205
DR vers	us non-DR T2D	M patients				DR		Non-DR T2DM			
16	(27)	Asian	Japan	PCR-RFLP	34	35	12	10	30	40	0.255
17	(21)	Asian	China	PCR-HA SSCP	81	40	11	16	15	9	0.152
18	(28)	Caucasian	Slovenia	PCR-RFLP	47	96	52	44	77	22	0.218
19	(29)	Asian	India	Snapshot	103	162	80	99	174	86	0.578
20	(24)	Asian	China	Allele specific PCR	10	24	6	24	14	2	0.982
21	(25)	Asian	China	PCR-RFLP	37	44	21	54	45	21	0.039
22	(16)	Asian	India	DNA sequencing	60	92	47	29	84	44	0.317
23	(15)	Asian	China	PCR-LDR	221	193	34	166	154	24	0.142

were finally included in meta-analysis (17,18,22,23,26). The pooled effect estimates did not reveal any significant relationship between the ICAM1 K469E variant and nephropathy in T2DM patients in the allelic model (G vs. A; OR = 0.97, 95% CI: 0.76-1.25, P = 0.830), recessive model (GG vs. AG+AA; OR = 0.77, 95% CI: 0.40-1.46, P = 0.416) (Figure 2B) and dominant model (AG+GG vs. AA; OR = 1.20, 95% CI: 0.84- 1.71, P = 0.324) (Table 2). Significant heterogeneity among studies was found in all genetic models (I² ranged from 0.50–0.84). There is no obvious asymmetry in the funnel plot shape (Figure 3B). In support of this, Egger's test also did not reveal the signs for publication bias (Table 2). As all studies concerning the DN and ICAM1 K469E variant are only of Asian origin, subgroup analyses based on ethnicity was not possible (Table 2).

Meta-analysis of DR and ICAM1 gene K469E variant

A total of 1542 T2DM patients with retinopathy and 1283 T2DM patients without retinopathy from eight articles were finally included in meta-analysis (15,16,21,24,25,27-29). The pooled effect estimate in the allelic model revealed that there are no significant associations between the ICAM1 K469E variant and retinopathy in T2DM

patients (G versus A; OR = 0.88, 95% CI: 0.62-1.24, P = 0.470), recessive model (GG versus AG+AA; OR = 0.85, 95% CI: 0.52-1.38, P = 0.503) (Figure 2C) and dominant model (AG+GG versus AA; OR = 0.87, 95% CI: 0.57-1.32, P = 0.495) (Table 2). Significant heterogeneity among studies was found in all genetic models (I² ranged from 0.77–0.88). There is no obvious asymmetry in the funnel plot shape (Figure 3C). In support of this, Egger's test also did not reveal the signs for publication bias (Table 2). Further subgroup analyses are not informative due to the lack of sufficient eligible studies in different ethnic groups (Table 2).

Discussion

T2DM is an inflammatory disease in which increased proinflammatory cytokines and chemokines were reported consistently. T2DM is characterized by glucose and lipid metabolism disorders, oxidative stress, glomerular hemodynamic changes, and corneal neovascularization, which lead to the DN and DR complications. ICAM1 is an acute-phase marker of inflammation. Multiple studies indicated that higher soluble ICAM1 levels were significantly correlated with micro-angiopathic complications in diabetic patients (30,31). Animal studies Table 2. Meta-analysis of the association of ICAM1 K469E variant on type 2 diabetes and vascular complications

Model		Allele contrast (G	vs. A)		Recessive model (GG vs. AG+AA)			Dominant model (AG+GG vs. AA)		
Ethnicity		Overall	Asian	Caucasian	Overall	Asian	Caucasian	Overall	Asian	Caucasian
T2DM versus Control										
Number of studies		10	8	2	10	8	2	10	8	2
Test of association	Model	Fixed	Fixed	Fixed	Fixed	Fixed	Fixed	Random	Random	Fixed
	OR (95% CI)	1.10 (1.01-1.20)	1.10 (0.99- 1.21)	1.10 (0.911.32)	1.27 (1.08-1.49)	1.27 (1.051.52)	1.27 (0.90-1.78)	1.08 (0.82-1.41)	1.08 (0.76-1.54)	1.04 (0.78-1.40)
	P value	0.032	0.054	0.342	0.004	0.011	0.173	0.594	0.652	0.778
Test of heterogeneity	I^2	0	0	0	0.134	0.244	0.118	0.692	0.760	0
	P value	0.894	0.806	0.485	0.320	0.235	0.287	<0.001	<0.001	0.896
Egger's test P value		0.565	0.454	NA	0.434	0.595	NA	0.762	0.800	NA
DN versus non-DN T2DM	patients									
Number of studies		5			5			5		
Test of association	Model	Random			Random			Random		
	OR (95% CI)	0.97 (0.76-1.25)			0.77 (0.40-1.46)			1.20 (0.84- 1.71)		
	P value	0.830			0.416			0.324		
	I^2	0.711			0.844			0.504		
Test of heterogeneity	P value	0.008			<0.001			0.089		
Egger's test P value		0.338			0.253			0.190		
DR versus non-DR T2DM p	oatients									
Number of studies		8	7	1	8	7	1	8	7	1
Test of association	Model	Random	Random	Fixed	Random	Random	Fixed	Random	Random	Fixed
	OR (95% CI)	0.88 (0.62-1.24)	0.82 (0.56-1.19)	1.44 (1.06-1.95)	0.85(0.52-1.38)	0.73 (0.44-1.21)	2 (1.15-3.48)	0.87 (0.57-1.32)	0.80 (0.50-1.28)	1.40 (0.86-2.27)
	P value	0.470	0.288	0.021	0.503	0.228	0.014	0.495	0.354	0.173
Test of heterogeneity	1^2	0.884	0.883	NA	0.799	0.770	NA	0.824	0.834	NA
	P value	<0.001	<0.001	NA	<0.001	<0.001	NA	<0.001	<0.001	NA
Egger's test P value		0.725	0.689	NA	0.707	0.649	NA	0.800	0.744	NA

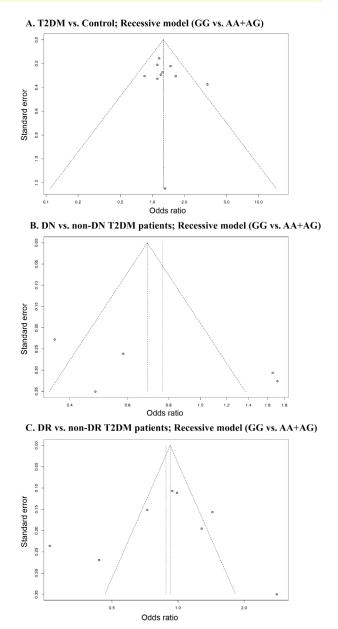

A. T2DM vs. Control; Recessive model (GG vs. AA+AG)												
	Experin	nental	C	ontrol	Odds Ratio							
Study	Events	Total	Events	Total		OR	95%-CI	W(fixed)				
Yokoyama et al., 2005 Liu et al., 2006 Wang et al., 2000 Chen et al., 2010 Zhou et al., 2010 Zhou et al., 2010 Ren et al., 2015 Abu Seman et al., 2015 Popovic et al., 2016 Fixed effect model	50 55 30 54 21 41 5 106 33 117	360 172 100 189 46 120 385 580 138 595 2685	18 10 33 27 1 24 50 91 22 36	152 80 98 111 30 150 672 562 138 200 2193		1.20 3.29 0.84 1.24 - 1.32 1.11 1.48 1.16 1.66 1.12	95%-Ci 0.68; 2.14] (1.58; 6.87] (0.46; 1.54] (0.73; 2.13] (0.11; 15.21] (0.59; 2.12] (0.96; 2.29] (0.85; 1.57] (0.91; 3.02] (0.74; 1.69] (1.08; 1.49]	7.9% 4.8% 7.3% 9.1% 0.4% 6.3% 13.9% 27.6% 7.3% 15.3%				
Heterogeneity: I-squared=13.4%, tau-squared=0.0112, p=0.3197												
					0.1 0.5 1 2 10							
B. DN vs. non-DN T2DM patients; Recessive model (GG vs. AA+AG)												
	Experim			ntrol	Odds Ratio							
Study	Events		Events	Total		OR	95%-CI V	V(random)				
-												
Wang et al., 2006	16	94	30	100			[0.24; 0.95]	18.8%				
Chen et al., 2010	32	94	22	95			[0.90; 3.25]	19.3%				
Abu Seman et al., 2015	34	303	72	277			[0.23; 0.56]	21.4%				
Ren et al., 2015	26	402	41	386			[0.35; 0.97]	20.7%				
Oguz et al., 2015	33	138	22	138		1.66	[0.91; 3.02]	19.8%				
Random effects model		1031		996	i	0 77	[0.40; 1.46]	100%				
Heterogeneity: I-squared=84			=0.4473. p			0.77	[0.40, 1.40]	100 /0				
,												
					0.5 1 2							
C. DR vs. non-DR T2	DM pa	tient	s; Rece	ssive	model (GG vs. AA+AG)							
	Experime			ntrol	Odds Ratio							
Study	Events 1	otal I	Events 1	fotal		OR	95%-CI	W(random)				
Kamiuchi et al., 2002	12	81	40	80		0.17		12.2%				
Liu et al., 2006	11	132	9	40			[0.12; 0.82]	10.3%				
Petrovic et al., 2008	52	195	22	143	1		[1.15; 3.48]	14.1%				
Balasubbu et al., 2010	80	345	86	359			[0.68; 1.36]	15.8%				
Zhu et al., 2010	6	40	2	40		3.35	[0.63; 17.74]	5.8%				
Zhou et al., 2010	21	102	21	120			[0.62; 2.39]	13.0%				
Vinita et al., 2012	47	199	44	157			[0.49; 1.28]	14.7%				
Lv et al., 2016	34	448	24	344		1.10	[0.64; 1.88]	14.2%				
Random effects model		1542		1283	4	0.85	[0.52; 1.38]	100%				
Heterogeneity: I-squared=79	2.00	[0.02, 1.00]										
5												
					0.1 0.5 1 2 10							

Figure 2. Forest plot displaying meta-analysis of the effect of ICAM1 K469E on type 2 diabetes and vascular complications. A. T2DM vs. Control; B. DN vs. non-DN T2DM patients; C. DR versus non-DR T2DM patients.

also demonstrated an elevation of serum and urinary ICAM1 levels in streptozotocin-induced rats compared to normal rats (32). In addition to this overexpression of ICAM1 was also noted in the glomeruli diabetic rats (33). The immunohistochemical expression analysis of the conjunctiva of diabetic patients with and without retinopathy revealed upregulation of ICAM1 expression in these tissues (34).

The *ICAM1* gene has seven exons that code for 505 amino acids protein, whose molecular weight varies between 80 and 114 kDa depending upon the cell types or glycosylation levels (35). Several lines of evidence demonstrated that the *ICAM1* gene activity is upregulated through the binding of NF-kappaB, STAT3 and δ CREB transcription factors (36). In contrast to this down-regulated ICAM1 expression was observed on the binding of microRNA, miR-221 (37). Of the *ICAM1* gene polymorphisms, an "A" to "G" transition at three bases upstream of ICAM1 mRNA splicing site which leads to substitution a lysine to glutamic acid at 469 amino acid (K469E; rs5498) is known to influence the RNA splicing patterns (38). Further, ICAM1 K469E variant is strongly correlated with the ICAM1 levels (39).

Our meta-analysis included 15 articles investigating the association between ICAM1 K469E variant and the predisposition of diabetes or diabetic vascular complications. The present meta-analysis across all ethnic populations showed that the ICAM1 K469E

Figure 3. Funnel plot for publication bias in the meta-analysis of ICAM1 K469E variant and the risk of type 2 diabetes and vascular complications.

variant is associated with diabetes under the allelic and recessive model. But we failed to identify any significant association between the ICAM1 K469E variant and vascular complications in any genetic model. An initial study was conducted by Guja et al, in which more frequent transmission of ICAM1 469E allele observed in Romanian T1DM families (40). Subsequently, several studies showed mixed results of associations of ICAM1 K469E mutant genotypes with diabetes (17,18,21), DN (18,23) and DR (16,24,28) in different populations. Results of our metaanalysis are consistent with one of the most recent metaanalyses, in which ICAM1 K469E was demonstrated as a susceptible factor for T2DM (41). Further, meta-analysis of studies on diabetic microvascular complications

Lakkakula S et al

showed that the ICAM1 K469E is associated with DN but not with DR (42,43). Two independent meta-analysis also provided no signs of association for K469E with DR in T2DM patients (44,45).

To the best of our knowledge, this meta-analysis embodies the most comprehensive studies on the association between ICAM1 K469E variant and risk of diabetes and its complications. In summary, ICAM1 K469E variant is associated with the risk of diabetes but there was no evidence for association with DN or DR. As the literature supporting the role of ICAM1 in DN or DR pathophysiology, our results some extent conflict with the biological plausibility that ICAM1 levels modulate diabetes complications, and may warrant additional investigations.

Authors' contribution

BVKSL conceived the study. SL, HKV and BVKSL collected data. BVKSL analyzed data. SL, HKV and BVKSL wrote the manuscript. All authors have read and approved the manuscript.

Conflicts of interest

The authors declare no conflicts of interest.

Ethical considerations

Ethical issues (including plagiarism, data fabrication, double publication) have been completely observed by the authors.

Funding/Support

None.

6

References

- Ormazabal V, Nair S, Elfeky O, Aguayo C, Salomon C, Zuniga FA. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc Diabetol. 2018;17:122. doi: 10.1186/s12933-018-0762-4.
- Strain WD, Paldanius PM. Diabetes, cardiovascular disease and the microcirculation. Cardiovasc Diabetol. 2018;17:57. doi: 10.1186/s12933-018-0703-2.
- Adeshara KA, Diwan AG, Tupe RS. Diabetes and complications: cellular signaling pathways, current understanding and targeted therapies. Curr Drug Targets. 2016;17:1309-28. doi: 10.2174/13894501176661512091240 07.
- 4. Bolotskaya LL, Bessmertnaya EG, Shestakova MV, Shamkhalova MS, Nikankina LV, Ilyin AV, et al. [A 20-year prospective follow-up study to evaluate the development of retinopathy and nephropathy after the onset of type 1 diabetes mellitus: Contribution of glycemic control and metabolic memory]. Ter Arkh. 2017;89:17-21. doi: 10.17116/terarkh2017891017-21.
- He F, Xia X, Wu XF, Yu XQ, Huang FX. Diabetic retinopathy in predicting diabetic nephropathy in patients with type 2 diabetes and renal disease: a meta-analysis. Diabetologia. 2013;56:457-66. doi: 10.1007/s00125-012-2796-6.
- 6. Zhang J, Wang Y, Li L, Zhang R, Guo R, Li H, et al. Diabetic

retinopathy may predict the renal outcomes of patients with diabetic nephropathy. Ren Fail. 2018;40:243-51. doi: 10.1080/0886022x.2018.1456453.

- Montesanto A, Bonfigli AR, Crocco P, Garagnani P, De Luca M, Boemi M, et al. Genes associated with type 2 diabetes and vascular complications. Aging. 2018;10(2):178-96. doi: 10.18632/aging.101375.
- Shestakova MV, Kochemasova TV, Gorelysheva VA, Osipova TV, Polosukhina EP, Baryshnikov A, et al. [The role of adhesion molecules (ICAM-1 and E-selectin) in development of diabetic microangiopathies]. Ter Arkh. 2002;74:24-7.
- Rovira-Llopis S, Escribano-Lopez I, Diaz-Morales N, Iannantuoni F, Lopez-Domenech S, Andujar I, et al. Downregulation of miR-31 in Diabetic Nephropathy and its Relationship with Inflammation. Cell Physiol Biochem. 2018;50:1005-14. doi:10.1159/000494485.
- Lee YH, Bae SC. Intercellular adhesion molecule-1 polymorphisms, K469E and G261R and susceptibility to vasculitis and rheumatoid arthritis: a meta-analysis. Cell Mol Biol (Noisy-le-grand). 2016;62:84-90. doi: 10.14715/ cmb/2016.62.12.15.
- Nepal G, Yadav JK, Kong Y. Association between K469E polymorphism of ICAM-1 gene and susceptibility of ischemic stroke: An updated meta-analysis. Mol Genet Genomic Med. 2019;7:e00784. doi: 10.1002/mgg3.784.
- Popovic D, Starcevic JN, Letonja MS, Makuc J, Vujkovac AC, Pleskovic RZ, et al. Polymorphism rs5498 of the ICAM-1 gene affects the progression of carotid atherosclerosis in patients with type 2 diabetes mellitus. Lipids Health Dis. 2016;15:79. 10.1186/s12944-016-0247-y.
- Wang D, Zhang FH, Zhao YT, Xiao XG, Liu S, Shi HB, et al. Association of polymorphism in ICAM-1 (K469E) and cytology parameters in patients' initial blood test with acute ischemic stroke. Genet Mol Res. 2015;14:15520-9. doi: 10.4238/2015.December.1.2.
- 14. Vora DK, Rosenbloom CL, Beaudet AL, Cottingham RW. Polymorphisms and linkage analysis for ICAM-1 and the selectin gene cluster. Genomics. 1994;21:473-7. doi: 10.1006/geno.1994.1303.
- Lv Z, Li Y, Wu Y, Qu Y. Association of ICAM-1 and HMGA1 Gene Variants with Retinopathy in Type 2 Diabetes Mellitus Among Chinese Individuals. Curr Eye Res. 2016;41:1118-22. doi: 10.3109/02713683.2015.1094093.
- Vinita K, Sripriya S, Prathiba K, Vaitheeswaran K, Sathyabaarathi R, Rajesh M, et al. ICAM-1 K469E polymorphism is a genetic determinant for the clinical risk factors of T2D subjects with retinopathy in Indians: a population-based case-control study. BMJ Open. 2012;2:e001036. doi: 10.1136/bmjopen-2012-001036.
- 17. Ren Z, Ji N, Jia K, Wang L, Gu HF, Ma J. Association of the intercellular adhesion molecule-1 gene polymorphisms with type 2 diabetes and diabetic peripheral neuropathy in a Chinese Han population. Genes Genomics. 2015;37:69-75. doi: 10.1007/s13258-014-0230-9.
- Oguz E, Tabur S, Akbas H, Korkmaz H, Torun A, Dilmec F, et al. Investigation of the role of ICAM-1 E469K and E-selectin S128R polymorphisms in diabetic neuropathy. Acta Medica. 2015;31:1113.
- Martorell-Marugan J, Toro-Dominguez D, Alarcon-Riquelme ME, Carmona-Saez P. MetaGenyo: a web tool for meta-analysis of genetic association studies. BMC

Bioinformatics. 2017;18:563. doi: 10.1186/s12859-017-1990-4.

- Yokoyama H, Tahara H, Emoto M, Fujiwara S, Araki T, Shinohara K, et al. The K469E polymorphism of the intercellular adhesion molecule-1 gene is associated with plasma fibrinogen level in type 2 diabetes. Metabolism. 2005;54:381-6. doi: 10.1016/j.metabol.2004.10.002.
- 21. Liu L, Yu Q, Wang H, Zhang SX, Huang C, Chen X. Association of intercellular adhesion molecule 1 polymorphisms with retinopathy in Chinese patients with Type 2 diabetes. Diabet Med. 2006;23:643-8. doi: 10.1111/j.1464-5491.2006.01884.x.
- 22. Wang Y-n, Liu H-l, Sun Y, Qun. L. Association of intercellular adhesion molecule-1 gene K469E polymorphism to type 2 diabetic nephropathy. Chin J Nephrol. 2006;22:201-4.
- 23. Chen JN, Li XL, Wei JZ, Deng YZ, Li KH, Su Z. The correlation of the ICAM-1 gene and type II diabetic nephropathy in Zhuang populations in the northern regions of Guilin. Acta Medicinae Sinica. 2010:10-4.
- Zhu J, Gao S, Chi X, Zhang Y, Lai X, Zhong W. Relationship between diabetic retinopathy and K469E gene polymorphism of intracellular adhesion molecule-1. J Fujian Med Univ. 2010;44:190-3.
- 25. Zhou Y, Fu P, Fu X. Study on the gene polymorphism of intercellular adhesion molecule-1 in type 2 diabetes mellitus patients with retinopathy. J Chin Pract Diagn Ther. 2010;10:29-31.
- Abu Seman N, Anderstam B, Wan Mohamud WN, Ostenson CG, Brismar K, Gu HF. Genetic, epigenetic and protein analyses of intercellular adhesion molecule 1 in Malaysian subjects with type 2 diabetes and diabetic nephropathy. J Diabetes Complicat. 2015;29:1234-9. doi: 10.1016/j. jdiacomp.2015.07.004.
- Kamiuchi K, Hasegawa G, Obayashi H, Kitamura A, Ishii M, Yano M, et al. Intercellular adhesion molecule-1 (ICAM-1) polymorphism is associated with diabetic retinopathy in Type 2 diabetes mellitus. Diabetic Med. 2002;19:371-6. doi: 10.1046/j.1464-5491.2002.00694.x.
- Petrovic MG, Osredkar J, Saraga-Babic M, Petrovic D. K469E polymorphism of the intracellular adhesion molecule 1 gene is associated with proliferative diabetic retinopathy in Caucasians with type 2 diabetes. Clin Exp Ophthalmol. 2008;36:468-72. doi: 10.1111/j.1442-9071.2008.01785.x.
- 29. Balasubbu S, Sundaresan P, Rajendran A, Ramasamy K, Govindarajan G, Perumalsamy N, et al. Association analysis of nine candidate gene polymorphisms in Indian patients with type 2 diabetic retinopathy. BMC Med Genet. 2010;11:158. doi: 10.1186/1471-2350-11-158.
- Rubio-Guerra AF, Vargas-Robles H, Ayala GV, Escalante-Acosta BA. Correlation between circulating adhesion molecule levels and albuminuria in type 2 diabetic normotensive patients. Med Sci Monit. 2007;13:Cr349-52.
- Mastej K, Adamiec R. Neutrophil surface expression of CD11b and CD62L in diabetic microangiopathy. Acta Diabetol. 2008;45:183-90. doi: 10.1007/s00592-008-0040-0.
- 32. Qian Y, Li S, Ye S, Chen Y, Zhai Z, Chen K, et al. Renoprotective effect of rosiglitazone through the suppression of renal intercellular adhesion molecule-1 expression in

streptozotocin-induced diabetic rats. J Endocrinol Invest. 2008;31:1069-74. doi: 10.1007/bf03345654.

- Watanabe N, Shikata K, Shikata Y, Sarai K, Omori K, Kodera R, et al. Involvement of MAPKs in ICAM-1 expression in glomerular endothelial cells in diabetic nephropathy. Acta Med Okayama. 2011;65:247-57. doi: 10.18926/amo/46850.
- Khalfaoui T, Lizard G, Ouertani-Meddeb A. Adhesion molecules (ICAM-1 and VCAM-1) and diabetic retinopathy in type 2 diabetes. J Mol Histol. 2008;39:243-9. doi: 10.1007/ s10735-007-9159-5.
- Newman PJ, Berndt MC, Gorski J, White GC, 2nd, Lyman S, Paddock C, et al. PECAM-1 (CD31) cloning and relation to adhesion molecules of the immunoglobulin gene superfamily. Science. 1990;247:1219-22. doi: 10.1126/ science.1690453.
- Roebuck KA, Finnegan A. Regulation of intercellular adhesion molecule-1 (CD54) gene expression. J Leukoc Biol. 1999;66:876-88. doi: 10.1002/jlb.66.6.876.
- 37. Gong AY, Hu G, Zhou R, Liu J, Feng Y, Soukup GA, et al. MicroRNA-221 controls expression of intercellular adhesion molecule-1 in epithelial cells in response to Cryptosporidium parvum infection. Int J Parasitol. 2011;41:397-403. doi: 10.1016/j.ijpara.2010.11.011.
- Burim RV, Teixeira SA, Colli BO, Peria FM, Tirapelli LF, Marie SK, et al. ICAM-1 (Lys469Glu) and PECAM-1 (Leu125Val) polymorphisms in diffuse astrocytomas. Clin Exp Med. 2009;9:157-63. doi: 10.1007/s10238-009-0040-6.
- Pare G, Ridker PM, Rose L, Barbalic M, Dupuis J, Dehghan A, et al. Genome-wide association analysis of soluble ICAM-1 concentration reveals novel associations at the NFKBIK, PNPLA3, RELA, and SH2B3 loci. PLoS Genet. 2011;7:e1001374. doi: 10.1371/journal.pgen.1001374.
- Guja C, Todd JA, Welsh K, Marshall S, Ionescu-Tirgoviste C. Increased transmission of intercellular adhesion-molecule 1, 469E allele in type 1 Romanian diabetic families. 42, 327. Diabetologia. 1999;42:327.
- Mi W, Xia Y, Bian Y. The influence of ICAM1 rs5498 on diabetes mellitus risk: evidence from a meta-analysis. Inflamm Res. 2019;68:275-84. doi: 10.1007/s00011-019-01220-4.
- Su X, Chen X, Liu L, Chang X, Yu X, Sun K. Intracellular adhesion molecule-1 K469E gene polymorphism and risk of diabetic microvascular complications: a meta-analysis. PLoS One. 2013;8:e69940. doi: 10.1371/journal.pone.0069940.
- Liu L, He D, Fang L, Yan X. Association between E469K polymorphism in the ICAM1 gene and the risk of diabetic nephropathy: a meta-analysis. Lipids Health Dis. 2018;17:293. doi: 10.1186/s12944-018-0922-2.
- 44. Xie Z, Liang H. Association between diabetic retinopathy in type 2 diabetes and the ICAM-1 rs5498 polymorphism: a meta-analysis of case-control studies. BMC Ophthalmol. 2018;18:297. doi: 10.1186/s12886-018-0961-5.
- 45. Sun H, Cong X, Sun R, Wang C, Wang X, Liu Y. Association between the ICAM-1 K469E polymorphism and diabetic retinopathy in Type 2 diabetes mellitus: a meta-analysis. Diabetes Res Clin Pract. 2014;104:e46-9. doi: 10.1016/j. diabres.2014.01.028.

Copyright © 2020 The Author(s); Published by Published by Society of Diabetic Nephropathy Prevention. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.jnephropharmacology.com